International Journal of Biometeorology

, Volume 53, Issue 6, pp 543–554 | Cite as

Modelling the wind damage probability in forests in Southwestern Germany for the 1999 winter storm ‘Lothar’

  • Dirk Schindler
  • Karin Grebhan
  • Axel Albrecht
  • Jochen Schönborn
Original Paper

Abstract

The wind damage probability (PDAM) in the forests in the federal state of Baden-Wuerttemberg (Southwestern Germany) was calculated using weights of evidence (WofE) methodology and a logistic regression model (LRM) after the winter storm ‘Lothar’ in December 1999. A geographic information system (GIS) was used for the area-wide spatial prediction and mapping of PDAM. The combination of the six evidential themes forest type, soil type, geology, soil moisture, soil acidification, and the ‘Lothar’ maximum gust field predicted wind damage best and was used to map PDAM in a 50 × 50 m resolution grid. GIS software was utilised to produce probability maps, which allowed the identification of areas of low, moderate, and high PDAM across the study area. The highest PDAM values were calculated for coniferous forest growing on acidic, fresh to moist soils on bunter sandstone formations—provided that ‘Lothar’ maximum gust speed exceeded 35 m s−1 in the areas in question. One of the most significant benefits associated with the results of this study is that, for the first time, there is a GIS-based area-wide quantification of PDAM in the forests in Southwestern Germany. In combination with the experience and expert knowledge of local foresters, the probability maps produced can be used as an important tool for decision support with respect to future silvicultural activities aimed at reducing wind damage. One limitation of the PDAM-predictions is that they are based on only one major storm event. At the moment it is not possible to relate storm event intensity to the amount of wind damage in forests due to the lack of comprehensive long-term tree and stand damage data across the study area.

Keywords

Storm ‘Lothar’ Wind damage Logistic regression analysis Weights of evidence methodology Baden-Wuerttemberg 

References

  1. Adrian G, Fiedler F (1995) Simulation of unstationary wind and temperature fields over complex terrain. Beitr Phys Atmos 64:27–48Google Scholar
  2. Agterberg FP, Bonham-Carter GF, Cheng Q, Wright D (1993) Weights of evidence modeling and weighted logistics regression for mineral potential mapping. In: Davis JC, Herzfeld UC (eds) Computers in geology—25 years of progress. Oxford University Press, New York, pp 13–32Google Scholar
  3. Allison D (2007) Logistic regression using the SAS® system. Theory and application. SAS Institute Inc, Cary, NCGoogle Scholar
  4. Ancelin P, Courbaud B, Fourcaud T (2004) Development of an individual tree-based mechanical model to predict wind damage within forest stands. For Ecol Manage 203:101–121CrossRefGoogle Scholar
  5. Baker SG, Kramer BS (2007) Peirce, Youden, and Receiver Operating Characteristic Curves. Am Stat 61:343–346. doi:10.1198/000313007X247643 CrossRefGoogle Scholar
  6. Bedacht E, Grimm T, Miesen P, Weindl H (2008) Stürme: Schadenrisiken und ihre Modellierung. Promet 34:40–45Google Scholar
  7. Bonham-Carter GF (1994) Geographic information systems for geoscientists: modeling with GIS. Pergamon, OxfordGoogle Scholar
  8. Bonham-Carter GF, Agterberg FP, Wright DF (1989) Weights of evidence modeling: a new approach to mapping mineral potential. Stat Appl Earth Sci Geol Surv Can Pap 89:171–183Google Scholar
  9. Bücking W (2006) Sturmbannwälder nach “Wiebke” und “Lothar” in Baden-Württemberg. Waldschutzgebiete Baden-Wurttemberg 9:1–14Google Scholar
  10. Chung CF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogramm Eng Rem S 65:1388–1399Google Scholar
  11. Clarke R (2001) Lothar and Martin. WMO Bull 50:54–59Google Scholar
  12. Dobbertin M (2002) Influence of stand structure and site factors on wind damage comparing the storms Vivian and Lothar. For Snow Landsc Res 1/2:187–205Google Scholar
  13. Eriksson M, Pouttu A, Roininen H (2005) The influence of windthrow area and timber characteristics on colonization of wind-felled spruces by Ips typographus (L.). For Ecol Manage 216:105–116CrossRefGoogle Scholar
  14. Gardiner BA (1992) Mathematical modelling of the static and dynamic characteristics of plantation trees. In: Franke J, Roeder A (eds) Mathematical modelling of forest ecosystems. Sauerländer, Frankfurt am Main, pp 40–61Google Scholar
  15. Gardiner B, Peltola H, Kellomäki S (2000) Comparison of two models for predicting the critical wind speeds required to damage coniferous trees. Ecol Modell 129:1–23. doi:10.1016/S0304-3800(00)00220-9 CrossRefGoogle Scholar
  16. Gardiner B, Byrne K, Hale S, Kamimura K, Mitchell SJ, Peltola H, Ruel J-C (2008) A review of mechanistic modelling of wind damage risk to forests. Forestry 81:447–463. doi:10.1093/forestry/cpn022 CrossRefGoogle Scholar
  17. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216. doi:10.1016/S0169-555X(99)00078-1 CrossRefGoogle Scholar
  18. Hanewinkel M (2005) Neural networks for assessing the risk of windthrow on the forest division level: a case study in southwest Germany. Eur J For Res 124:243–249. doi:10.1007/s10342-005-0064-8 Google Scholar
  19. Hanewinkel M, Zhou W, Schill C (2004) A neural network approach to identify forest stands susceptible to wind damage. For Ecol Manage 196:227–243CrossRefGoogle Scholar
  20. Hartebrodt C (2004) The impact of storm damage on small-scale forest enterprises in the south-west of Germany. Small-scale Forest Economics, Management and Policy 3:203–222Google Scholar
  21. Heneka P, Hofherr T, Ruck B, Kottmeier C (2006) Winter storm risk of residential structures–model development and application to the German state of Baden-Württemberg. Nat Hazards Earth Syst Sci 6:721–733Google Scholar
  22. Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley, New YorkGoogle Scholar
  23. Jalkanen A, Mattila U (2000) Logistic regression model for wind and snow damage in northern Finland based on the National Forest Inventory data. For Ecol Manage 135:315–330. doi:10.1016/S0378-1127(00)00289-9 CrossRefGoogle Scholar
  24. Kändler G, Bösch B, Schmidt M (2005) Wesentliche Ergebnisse der zweiten Bundeswaldinventur in Baden-Württemberg–Rückblick und Ausblick. Forstarchiv 60:45–49Google Scholar
  25. Keil M, Kiefl R, Strunz G (2005) CORINE Land Cover 2000—Germany. Final Report – Wessling, 72 ppGoogle Scholar
  26. Klawa M, Ulbrich U (2003) A model for the estimation of storm losses and the identification of severe winter storms in Germany. Nat Hazards Earth Syst Sci 3:725–743Google Scholar
  27. Kohnle U, Gauckler S, Risse FJ, Stahl S (2003) Orkan Lothar im Spiegel von Betriebsinventur und Einschlagsbuchführung: Auswirkungen auf einen Forstbezirk im Randbereich des Sturms. Allg Forstzeitschr – Der Wald 58: 1203–1207Google Scholar
  28. Lindemann JD, Baker WL (2002) Using GIS to analyse a severe forest blowdown in the Southern Rocky Mountains. Int J Geogr Inf Sci 16:377–399. doi:10.1080/13658810210136069 CrossRefGoogle Scholar
  29. Lohmander P, Helles F (1987) Windthrow probability as a function of stand characteristics and shelter. Scand J For Res 2:227–238. doi:10.1080/02827588709382460 CrossRefGoogle Scholar
  30. Mathew J, Jha VK, Rawat GS (2007) Weights of evidence modelling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhand. Curr Sci 92:628–638Google Scholar
  31. Mayer H (1987) Wind-induced tree sways. Trees 1:195–206. doi:10.1007/BF01816816 CrossRefGoogle Scholar
  32. Mayer P, Brang P, Dobbertin M, Hallenbarter D, Renaud J-P, Walthert L, Zimmermann S (2005) Forest storm damage is more frequent on acidic soils. Ann Sci 62:303–311. doi:10.1051/forest:2005025 CrossRefGoogle Scholar
  33. Mitchell SJ, Hailemariam T, Kulis Y (2001) Empirical modeling of cutblock edge windthrow risk on Vancouver Island, Canada, using stand level information. For Ecol Manage 154:117–130CrossRefGoogle Scholar
  34. Moore JR, Maguire DA (2008) Simulating the dynamic behavior of Douglas-fir trees under applied loads by the finite element method. Tree Physiol 28:75–83PubMedGoogle Scholar
  35. Oliver HR, Mayhead GJ (1974) Wind measurements in a pine forest during a destructive gale. Forestry 47:185–194. doi:10.1093/forestry/47.2.185 CrossRefGoogle Scholar
  36. Pearce P, Lloyd D, McConnell D (2001) The post-Christmas "French" storms of 1999. Weather 56:81–91Google Scholar
  37. Peltola H, Kellomäki S, Väisänen H, Ikonen V-P (1999) A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce and birch. Can J Res 29:647–661. doi:10.1139/cjfr-29-6-647 CrossRefGoogle Scholar
  38. Piegorsch WW, Bailer AJ (2005) Analyzing environmental data. Wiley, ChichesterCrossRefGoogle Scholar
  39. Quine CP, White IMS (1998) The potential of distance-limited topex in the prediction of site windiness. Forestry 71:325–332. doi:10.1093/forestry/71.4.325 CrossRefGoogle Scholar
  40. Quine CP, Gardiner BA (2007) Understanding how the interaction of wind and trees results in windthrow, stem breakage, and canopy gap formation. In: Johnson EA, Miyanishi K (eds) Plant disturbance ecology—the process and the response. Elsevier, Amsterdam, pp 103–155Google Scholar
  41. Raines GL (2006) Resource materials for a GIS spatial analysis course. U.S. Geological Survey, Open file report 01-221, http://pubs.usgs.gov/of/2001/of01-221/
  42. Raines GL, Bonham-Carter GF, Kemp L (2000) Predictive probabilistic modelling using ArcView GIS. http://www.esri.com/news/arcuser/0400/files/wofe.pdf
  43. Romero-Calcerrada R, Novello CJ, Millington JDA, Gomez-Jimenez I (2008) GIS analysis of spatial patterns of human-caused wildfire ignition in the SW of Madrid (Central Spain). Landscape Ecol 23:341–354. doi:10.1007/s10980-008-9190-2 CrossRefGoogle Scholar
  44. Rottmann M (1986) Wind- und Sturmschäden im Wald. Sauerländer, Frankfurt am MainGoogle Scholar
  45. SAS Institute Inc (1995) Logistic regression examples using the SAS® system. Version 6, 1st edn. SAS Institute Inc, Cary, NCGoogle Scholar
  46. Sawatzky DL, Raines GL, Bonham-Carter GF, Looney CG (2004) ARCSDM3.1: ArcMAP extension for spatial data modelling using weights of evidence, logistic regression, fuzzy logic and neural network analysis. http://www.ige.unicamp.br/sdm/ArcSDM31/
  47. Sawatzky DL, Raines GL, Bonham-Carter GF, Looney CG (2007) Spatial Data Modeller (SDM): ArcMAP 9.2 geoprocessing tools for spatial data modelling using weights of evidence, logistic regression, fuzzy logic and neural networks. http://arcscripts.esri.com/details.asp?dbid=15341
  48. Schelhaas M-J, Nabuurs G-J, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Change Biol 9:1620–1633. doi:10.1046/j.1365-2486.2003.00684.x CrossRefGoogle Scholar
  49. Schindler D (2008) Responses of Scots pine trees to dynamic wind loading. Agric For Meteorol 148:1733–1742. doi:10.1016/j.agrformet.2008.06.003 CrossRefGoogle Scholar
  50. Schmidt M, Bayer J, Kändler G (2006) Sturm ‚Lothar‘–Ansatz einer inventurbasierten Risikoanalyse. DVFFA–Sektion Ertragskunde. Jahrestagung 2006:5–20Google Scholar
  51. Schmoeckel J, Kottmeier C (2008) Storm damage in the Black Forest caused by the winter storm “Lothar”–Part 1: Airborne damage assessment. Nat Hazards Earth Syst Sci 8:795–803Google Scholar
  52. Schütz J-P, Götz M, Schmid W, Mandallaz D (2006) Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur J For Res 125:291–302. doi:10.1007/s10342-006-0111-0 Google Scholar
  53. Scott RE, Mitchell SJ (2005) Empirical modelling of windthrow risk in partially harvested stands using tree, neighbourhood, and stand attributes. For Ecol Manage 218:193–209CrossRefGoogle Scholar
  54. Sellier D, Brunet Y, Fourcaud T (2008) A numerical model of tree aerodynamic response to a turbulent airflow. Forestry 81:279–297. doi:10.1093/forestry/cpn024 CrossRefGoogle Scholar
  55. Sinton DS, Jones JA, Ohmann JL, Swanson FJ (2000) Windthrow disturbance, forest composition, and structure in the Bull Run Basin, Oregon. Ecology 81:2539–2556CrossRefGoogle Scholar
  56. Ulanova NG (2000) The effects of windthrow on forests at different spatial scales: a review. For Ecol Manage 135:155–167CrossRefGoogle Scholar
  57. Ulbrich U, Fink AH, Klawa M, Pinto JG (2001) Three extreme storms over Europe in December 1999. Weather 56:70–80Google Scholar
  58. Valinger E, Lundqvist L, Bondesson L (1993) Assessing the risk of snow and wind damage from tree physical characteristics. Forestry 66:249–260. doi:10.1093/forestry/66.3.249 CrossRefGoogle Scholar
  59. van den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76:392–410. doi:10.1016/j.geomorph.2005.12.003 CrossRefGoogle Scholar
  60. Whiteman CD, Doran JC (1993) The relationship between overlying synoptic-scale flows and winds within a valley. J Appl Met 32:1669–1682. doi:10.1175/1520-0450(1993)032<1669:TRBOSS>2.0.CO;2 CrossRefGoogle Scholar
  61. Zweig MH, Campbell G (1993) Receiver-Operating Characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39:561–577PubMedGoogle Scholar

Copyright information

© ISB 2009

Authors and Affiliations

  • Dirk Schindler
    • 1
  • Karin Grebhan
    • 1
  • Axel Albrecht
    • 2
  • Jochen Schönborn
    • 1
  1. 1.Meteorological InstituteUniversity of FreiburgFreiburgGermany
  2. 2.Forest Research Institute of Baden-WuerttembergFreiburgGermany

Personalised recommendations