International Journal of Biometeorology

, Volume 53, Issue 3, pp 287–298

Urbanisation induces early flowering: evidence from Platanus acerifolia and Prunus cerasus

  • A. Mimet
  • V. Pellissier
  • H. Quénol
  • R. Aguejdad
  • V. Dubreuil
  • F. Rozé
Original Paper

Abstract

The effect of towns on plant phenology, i.e. advancement of spring development compared with a rural environment, via the urban heat island (UHI) phenomenon, has been shown for many towns in many countries. This work combines experimental and observational methodology to provide a better and deeper view of climatic habitat in an urban context with a view to understanding the relationship between plant development and urban climate on the intra-urban scale (by taking into account town structure). A dense network of 17 meteorological stations was set up in Rennes, France, enabling us to identify and quantify climatic changes associated with the UHI. Meanwhile, phenological observations were made during early spring (March and April) in 2005 on Platanus acerifolia and Prunus cerasus to study the relationship between climatic and phenological data. The results show that there is both a climatic gradient and a developmental gradient corresponding to the type of urbanisation in the town of Rennes. The town influences plant phenology by reducing the diurnal temperature range and by increasing the minimum temperature as one approaches the town centre. The influence of ground cover type (plants or buildings) on development is also shown. The developmental phases of preflowering and flowering are influenced to differing extents by climatic variables. The period during which climatic variables are effective before a given developmental phase varies considerably. The preflowering phases are best correlated with the mean of the minimum air temperature for the 15-day period before the observation, whereas flowering appears to be more dependent on the mean of the daily diurnal temperature range for the 8 days preceding the observation.

Keywords

Urban heat island Experimental phenology Early spring phenology Minimum temperature Diurnal temperature range 

References

  1. Aerts R, Cornelissen JHC, Dorrepaal E (2006) Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecol 182:65–77Google Scholar
  2. Benedict C, Geisler M, Trygg J, Huner N, Hurry V (2006) Consensus by Democraty. Using meta-analyses of microarray and genomic data to model the cold acclimatation signaling pathway in Arabidopsis. Plant Physiol 141:1219–1232, doi:10.1104/pp.106.083527 PubMedCrossRefGoogle Scholar
  3. Cantat O (1989) Contribution à l’étude des variations du bilan d’énergie en région parisienne. Essai sur les bilans d’énergie dans les grandes métropoles. PhD Thesis, University Paris-4, 362 p and 254 pGoogle Scholar
  4. Carrega P (1994) Topoclimatologie et habitat. Revue d’Analyse Spatiale Quantitative et Appliquée, Th. Et., 35 & 36Google Scholar
  5. Chmielewski FM, Rotzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112, doi:10.1016/S0168-1923(01)00233-7 CrossRefGoogle Scholar
  6. Clergeau P, Croci S, Jokimäki J, Kaisanlahti-Jokimäki ML, Dinetti M (2006) Avifauna homogenisation by urbanisation: Analysis at different European latitudes. Biol Conserv 127:336–344, doi:10.1016/j.biocon.2005.06.035 CrossRefGoogle Scholar
  7. Daniel H, Lecamp E (2004) Distribution of three indigenous fern along a rural-urban gradient in the city of Angers, France. Urban For Urban Green 3:19–27, doi:10.1016/j.ufug.2004.04.001 CrossRefGoogle Scholar
  8. Davis Instrument Corp (2000) Davis Weather Monitor II Owner’s Manual. Davis Instruments, Hayward, USAGoogle Scholar
  9. Defila C (1991) Pflanzenphänologie der Schweiz. Veroeffentlichungen, SwitzerlandGoogle Scholar
  10. Defila C, Clot B (2001) Phytophenological trends in the Swiss Alps. Int J Biometeorol 45:203–207, doi:10.1007/s004840100101 PubMedCrossRefGoogle Scholar
  11. Defila C, Jeanneret J (2007) Phänologie —ein Biomonitoring und seine Anwendungen Schweiz. Z Forstwes 5:98–104, doi:10.3188/szf.2007.0098 CrossRefGoogle Scholar
  12. Dreyer LL, Esler KJ, Zietsman J (2005) Flowering phenology of South African Oxalis—possible indicator of climate change? S Afr J Bot 72:150–156, doi:10.1016/j.sajb.2005.06.009 CrossRefGoogle Scholar
  13. Escourou G (ed) (1981) Climat et environnement. Les facteurs locaux du climat. Masson, ParisGoogle Scholar
  14. Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Am Assoc Adv Sci 296:1689–1691Google Scholar
  15. Halliday KJ, Salter MG, Thingnaes E, Whitelam GC (2003) Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J 33:875–885, doi:10.1046/j.1365-313X.2003.01674.x PubMedCrossRefGoogle Scholar
  16. Heide OM (2008) Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species. Sci Horticult 115:309–314, doi:10.1016/j.scienta.2007.10.005 CrossRefGoogle Scholar
  17. Kvaalen H, Johnsen O (2007) Timing of bud set in Picea abies is regulated by a memory of temperature durind zygotic and somatic embryogenesis. New Phytol 177:49–59PubMedGoogle Scholar
  18. Lee DO (1992) Urban warming? An analysis of recent trends in London’s heat island. Weather 47:50–56Google Scholar
  19. Linderholm HW (2006) Growing season changes in the last century. Agric For Meteorol 137:1–14, doi:10.1016/j.agrformet.2006.03.006 CrossRefGoogle Scholar
  20. Lu P, Yu Q, Liu J, Lee X (2006) Advance of tree-flowering dates in response to urban climate change. Agric For Meteorol 138:120–131, doi:10.1016/j.agrformet.2006.04.002 CrossRefGoogle Scholar
  21. Luo Z, Sun OJ, Ge Q, Xu W, Zheng J (2007) Phenological responses of plants to climate change in an urban environment. Ecol Res 22:507–514, doi:10.1007/s11284-006-0044-6 CrossRefGoogle Scholar
  22. Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76–81, doi:10.1007/s004840000054 PubMedCrossRefGoogle Scholar
  23. Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Glob Change Biol 7:657–666, doi:10.1046/j.1365-2486.2001.00430.x CrossRefGoogle Scholar
  24. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remiová V, Scheifinger H, Striz M, Susnik S, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1–8, doi:10.1111/j.1365-2486.2006.01193.x CrossRefGoogle Scholar
  25. Myking T (1997) Effects of constant and fluctuating temperature on time to budburst in Betula pubescens and its relation to bud respiration. Trees (Berl) 12:107–112Google Scholar
  26. Nieddu G, Giunta F, Mulas M (1990) Influence of postdormant temperatures on bloom time of four almond cultivars. Sci Horticult 43:63–67, doi:10.1016/0304-4238(90)90037-F CrossRefGoogle Scholar
  27. Oke TR (ed) (1987) Boundary layer climates, 2nd edn. Routledge, LondonGoogle Scholar
  28. Peiling L, Qiang Y, Jiandong L, Xuhui L (2006) Advance of tree-flowering dates in response to urban climate change. Agric For Meteorol 138:120–131, doi:10.1016/j.agrformet.2006.04.002 CrossRefGoogle Scholar
  29. Pellissier V, Rozé F, Aguejdad R, Quénol H, Clergeau P (2008) Relationship between the soil seed bank, vegetation and soil fertility along an urbanisation gradient. Appl Veg Sci 11:325–333CrossRefGoogle Scholar
  30. Peñuelas J, Fillela I, Zhang X, Llorens L, Ogaya R, Lloret F, Comas P, Estiarte M, Terradas J (2003) Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol 161:837–846, doi:10.1111/j.1469-8137.2004.01003.x CrossRefGoogle Scholar
  31. Roetzer T, Wittenzeller M, Haeckel H, Nekovar J (2000) Phenology in Central Europe- differences and trends of spring phenophases in urban and rural areas. Int J Biometeorol 44:60–66, doi:10.1007/s004840000062 PubMedCrossRefGoogle Scholar
  32. Schwartz MD (1999) Advancing to full bloom: planning phenological research for the 21st century. Int J Biometeorol 42:113–118, doi:10.1007/s004840050093 CrossRefGoogle Scholar
  33. Setiyono TD, Weiss A, Specht J, Bastidas AM, Cassman KG, Dobermann A (2006) Understanding and modeling the effect of temperature and daylength on soybean phenology under high-yield conditions. Field Crops Res 100:257–271, doi:10.1016/j.fcr.2006.07.011 CrossRefGoogle Scholar
  34. Shochat E, Warren PS, Faeth SH, McIntyre NE, Hope D (2006a) From patterns to emerging processes in mechanistic urban ecology. Trends Ecol Evol 21:186–191, doi:10.1016/j.tree.2005.11.019 PubMedCrossRefGoogle Scholar
  35. Shochat E, Wareen PS, Faeth SH (2006b) Future directions in urban ecology. Trends Ecol Evol 21:661–662, doi:10.1016/j.tree.2006.09.007 CrossRefGoogle Scholar
  36. Smith H, Whitelam GC (1997) The shade avoidance syndrome: multiple response mediated by multiple phytochromes. Plant Cell Environ 20:840–844, doi:10.1046/j.1365-3040.1997.d01-104.x CrossRefGoogle Scholar
  37. Sparks TH, Jeffree EP, Jeffree CE (2001) An examination of the relationship between flowering times and temperatures at the national scale using long-term phenological records for the UK. Int J Biometeorol 44:82–87, doi:10.1007/s004840000049 CrossRefGoogle Scholar
  38. Stewart D, Love W (1968) A general canonical correlation index. Psychol Bull 70:160–163, doi:10.1037/h0026143 PubMedCrossRefGoogle Scholar
  39. United Nation Population Division (eds) (2008) World urbanization prospects: the 2007 Revision. Executive summary. U.N. Department of Economic and Social Affairs, New YorkGoogle Scholar
  40. Vallet J, Daniel H, Beaujouan V, Rozé F (2008) Plant species response to urbanization: comparison of isolated woodland patches in two cities of North-Western France. Landscape Ecol 23:1205–1217, doi:10.1007/s10980-008-9293-9 CrossRefGoogle Scholar
  41. Walther GR (2003) Plants in a warmer world. Perspect Plant Ecol Evol Syst 6:169–185, doi:10.1078/1433-8319-00076 CrossRefGoogle Scholar
  42. Wielgolaski FE (1999) Starting dates and basics temperatures in phenological observations of plants. Int J Biometeorol 42:158–168, doi:10.1007/s004840050100 CrossRefGoogle Scholar
  43. Wolfe DW, Schwartz MW, Lakso AN (2005) Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA. Int J Biometeorol 49:303–309, doi:10.1007/s00484-004-0248-9 PubMedCrossRefGoogle Scholar

Copyright information

© ISB 2009

Authors and Affiliations

  • A. Mimet
    • 1
  • V. Pellissier
    • 2
  • H. Quénol
    • 3
  • R. Aguejdad
    • 3
  • V. Dubreuil
    • 3
  • F. Rozé
    • 1
  1. 1.UMR 6553Université Rennes 1Rennes cedexFrance
  2. 2.ECOMERS, EA 4228Université Nice Sophia AntipolisNice cedex 2France
  3. 3.COSTEL, UMR 6554Université Rennes 2Rennes cedexFrance

Personalised recommendations