International Journal of Biometeorology

, Volume 53, Issue 1, pp 75–86

Are the birch trees in Southern England a source of Betula pollen for North London?

Original Paper


Birch pollen is highly allergenic. Knowledge of daily variations, atmospheric transport and source areas of birch pollen is important for exposure studies and for warnings to the public, especially for large cities such as London. Our results show that broad-leaved forests with high birch tree densities are located to the south and west of London. Bi-hourly Betula pollen concentrations for all the days included in the study, and for all available days with high birch pollen counts (daily average birch pollen counts >80 grains/m3), show that, on average, there is a peak between 1400 hours and 1600 hours. Back-trajectory analysis showed that, on days with high birch pollen counts (n = 60), 80% of air masses arriving at the time of peak diurnal birch pollen count approached North London from the south in a 180 degree arc from due east to due west. Detailed investigations of three Betula pollen episodes, with distinctly different diurnal patterns compared to the mean daily cycle, were used to illustrate how night-time maxima (2200–0400 hours) in Betula pollen counts could be the result of transport from distant sources or long transport times caused by slow moving air masses. We conclude that the Betula pollen recorded in North London could originate from sources found to the west and south of the city and not just trees within London itself. Possible sources outside the city include Continental Europe and the Betula trees within the broad-leaved forests of Southern England.


Aerobiology Back-trajectory analysis Birch pollen allergy Source map United Kingdom 


  1. ALK Abelló (2000) Allergy—living and learning. A survey of 7000 allergy patients in 10 European countries. Available at:
  2. APG II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot J Linn Soc 141:399–436. doi:10.1046/j.1095-8339.2003.t01-1-00158.x CrossRefGoogle Scholar
  3. Bachert C, Vignola AM, Gevaert P, Leynaert B, Van Cauwenberge P, Bousquet J (2004) Allergic rhinitis, rhinosinusitis, and asthma: one airway disease. Immunol Allergy Clin North Am 24:19–43. doi:10.1016/S0889-8561(03)00104-8 PubMedCrossRefGoogle Scholar
  4. BAF (1995) Airborne pollens and spores: a guide to trapping and counting. The British Aerobiology Federation, Aylesford. ISBN 0-9525617-0-0Google Scholar
  5. Blaiss MS (2003) Important aspects in management of allergic rhinitis: compliance, cost, and quality of life. Allergy Asthma Proc 24:231–238PubMedGoogle Scholar
  6. Bousquet J, Van Cauwenberge P, Khaltaev N, Ait-Khaled N, Annesi-Maesano I, Baena-Cagnani C, Bateman E, Bonini S, Canonica GW, Carlsen KH, Demoly P, Durham SR, Enarson D, Fokkens WJ, van Wijk RG, Howarth P, Ivanova NA, Kemp JP, Klossek JM, Lockey RF, Lund V, Mackay I, Malling HJ, Meltzer EO, Mygind N, Okunda M, Pawankar R, Price D, Scadding GK, Simons FER, Szczeklik A, Valovirta E, Vignola AM, Wang DY, Warner JO, Weiss KB (2001) Allergic rhinitis and its impact on asthma. J Allergy Clin Immunol 108:S147–S334. doi:10.1067/mai.2001.118891 PubMedCrossRefGoogle Scholar
  7. Brandt J, Christensen JH, Frohn LM, Berkowicz R (2001a) Operational air pollution forecasts from regional scale to urban street scale. Part 1: System description. Phys Chem Earth, Part B Hydrol Oceans Atmos 26:781–786. doi:10.1016/S1464-1909(01)00086-7 CrossRefGoogle Scholar
  8. Brandt J, Christensen JH, Frohn LM, Berkowicz R (2001b) Operational air pollution forecasts from regional scale to urban street scale. Part 2: Performance evaluation. Phys Chem Earth, Part B Hydrol Oceans Atmos 26:825–830. doi:10.1016/S1464-1909(01)00092-2 CrossRefGoogle Scholar
  9. Bundesministerium für Ernährung, Landwirtsaft und Verbraucherschutz (2004) Die zweite Bundeswaldinventur—BWI2—Das wichtichste in Kürze. Berlin, GermanyGoogle Scholar
  10. Corden J, Millington W, Bailey J, Brookes M, Caulton E, Emberlin J, Mullins J, Simpson C, Wood A (2000) UK regional variations in Betula pollen (1993–1997). Aerobiologia 16:227–232. doi:10.1023/A:1007607307139 CrossRefGoogle Scholar
  11. Corden JM, Stach A, Millington WM (2002) A comparison of Betula pollen seasons at two European sites; Derby, United Kingdom and Poznan, Poland (1995–1999). Aerobiologia 18:45–53. doi:10.1023/A:1014953527763 CrossRefGoogle Scholar
  12. Dahl Å, Strandhede SO (1996) Predicting the intensity of the birch pollen season. Aerobiologia 12:97–106Google Scholar
  13. Demoly P, Bousquet J (2006) The relation between asthma and allergic rhinitis. Lancet 368:711–713. doi:10.1016/S0140-6736(06)69263-5 PubMedCrossRefGoogle Scholar
  14. EA (1999) Environment Agency. Thames Tideway (Teddington to Tower Bridge) Local Environment Agency Plan: Action Plan.Google Scholar
  15. Emberlin J (1995) Interaction between air pollutants and aeroallergens. Clin Exp Allergy 25:33–39. doi:10.1111/j.1365-2222.1995.tb00040.x PubMedCrossRefGoogle Scholar
  16. Emberlin JC (1997) Grass, tree and weed pollens. In: Kay AB (ed) Allergy and allergic diseases. National Heart and Lung Institute, LondonGoogle Scholar
  17. Emberlin J, Savage M, Woodman R (1993) Annual variations in the concentrations of Betula pollen in the London area, 1961–1990. Grana 32:359–363Google Scholar
  18. Emberlin J, Mullins J, Corden J, Millington W, Brooke M, Savage M, Jones S (1997) The trend to earlier Birch pollen seasons in the UK: a biotic response to changes in weather conditions? Grana 36:29–33Google Scholar
  19. Emberlin J, Detandt M, Gehrig R, Jaeger S, Nolard N, Rantio-Lehtimaki A (2002) Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. Int J Biometeorol 46:159–170. doi:10.1007/s00484-002-0139-x PubMedCrossRefGoogle Scholar
  20. European Commission (2005) European Commission Image2000 and CLC2000 products and methods. Joint Research Center (DG JRC), Institute for Environment and Sustainability, Land Management Unit, I-21020 Ispra (VA), Italy, pp 1–152Google Scholar
  21. Ferguson BJ (2004) Influences of allergic rhinitis on sleep. Otolaryngol Head Neck Surg 130:617–629. doi:10.1016/j.otohns.2004.02.001 PubMedCrossRefGoogle Scholar
  22. Forestry Commission (2001) National Inventory of Woodland and Trees. Forestry Commission, Wetherby, UK, pp 1–68Google Scholar
  23. Goudie A (1996) The nature of the environment. Blackwell, London, pp 1–448Google Scholar
  24. Grime JP, Hodgson JG, Hunt R (1996) Comparative plant ecology. Chapman and Hall, London, pp 1–752Google Scholar
  25. Grossman J (1997) One airway, one disease. Chest 111:S11–S16. doi:10.1378/chest.111.2_Supplement.11S CrossRefGoogle Scholar
  26. Hertel O, Skjøth CA, Brandt J, Christensen JH, Frohn LM, Frydendall J (2003) Operational mapping of atmospheric nitrogen deposition to the Baltic Sea. Atmos Chem Phys 3:2083–2099Google Scholar
  27. Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265. doi:10.1111/j.1744-7348.1952.tb00904.x CrossRefGoogle Scholar
  28. Hjelmroos M (1991) Evidence of long-distance transport of Betula pollen. Grana 30:215–228Google Scholar
  29. Hjelmroos M (1992) Long-distance transport of Betula pollen grains and allergic symptons. Aerobiologia 8:231–236. doi:10.1007/BF02071631 CrossRefGoogle Scholar
  30. IFN (2007) French National Forest Inventory (Inventaire Forestier National). Vidal, Nogent-sur-Vernisson, France
  31. Janjic ZI (1990) The step-mountain coordinate: physical package. Mon Weather Rev 118:1429–1443. doi:10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2 CrossRefGoogle Scholar
  32. Janjic ZI (1994) The step-mountain Eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945. doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2 CrossRefGoogle Scholar
  33. Koivikko A, Kupias R, Makinen Y, Pohjola A (1986) Pollen seasons—forecasts of the most important allergenic plants in Finland. Allergy 41:233–242. doi:10.1111/j.1398-9995.1986.tb02023.x PubMedCrossRefGoogle Scholar
  34. Konijnendijk CC, Nilsson K, Randrup TB, Schipperin J (2005) Urban forest and trees. Springer, BerlinGoogle Scholar
  35. Laurent C, Lecomte H, Perrin D, De Schepper C, Waterinckx M, Vanwijnsberge S (2005) Global forest resources assessment 2005, Country Report Belgium. Forestry Department, Food and Agriculture Organization of the United Nations. The Global Forest Resources Assessment 2005 Country Report Series.
  36. Linkosalo T (1999) Regularities and patterns in the spring phenology of some boreal trees. Silva Fenn 33:237–245Google Scholar
  37. Linneberg A (2000) Udviklingen af forekomsten af luftvejsallergi i Danmark. Environment and Health (Miljø og Sundhed 15:5–7Google Scholar
  38. Matthiesen F, Ipsen H, Løwenstein H (1991) Pollen allergens. In: D’Amato G, Spieksma FTM, Bonini S (eds) Allergenic pollen and pollinosis in Europe. Blackwell, Oxford, pp 36–44Google Scholar
  39. Meltzer EO (1998) Treatment options for the child with allergic rhinitis. Clin Pediatr 37:1–10. doi:10.1177/000992289803700101 CrossRefGoogle Scholar
  40. Nickovic S, Mikhailovic B, Rajkovic B, Papdoupulus A (1998) The weather forecasting system SKIRON II. University of Athens, Greece, pp 1–228Google Scholar
  41. Norris-Hill J, Emberlin J (1991) Diurnal-variation of pollen concentration in the air of north-central London. Grana 30:229–234CrossRefGoogle Scholar
  42. Oei HD, Spieksma FTM, Bruynzeel PLB (1986) Birch pollen asthma in the Netherlands. Allergy 41:435–441. doi:10.1111/j.1398-9995.1986.tb00324.x PubMedCrossRefGoogle Scholar
  43. Paasman JM (2005) Global Forest Resources Assessment. Country Report Netherlands. Forestry Department, Food and Agriculture Organization of the United Nations. The Global Forest Resources Assessment 2005 Country Report Series, pp 1-42.
  44. Pauleit S, Duhme F (2000) GIS assessment of Munich’s urban forest structure for urban planning. J Arboricult 26:133–141Google Scholar
  45. Pauleit S, Jones N, Garcia-Martin G, Garcia-Valdecantos JL, Riviere LM, Vidal-Beaudet L, Bodson M, Randrup TB (2002) Tree establishment practice in towns and cities—results from a European survey. Urban For Urban Green 1:83–96. doi:10.1078/1618-8667-00009 CrossRefGoogle Scholar
  46. Perry M, Hollis D (2005) The development of a new set of long-term climate averages for the UK. Int J Climatol 25:1023–1039. doi:10.1002/joc.1160 CrossRefGoogle Scholar
  47. Preston CD, Pearman DA, Dines TD (2002) New atlas of the British and Irish flora. Oxford University Press, OxfordGoogle Scholar
  48. Puc M (2003) Characterisation of pollen allergens. Ann Agric Environ Med 10:143–149PubMedGoogle Scholar
  49. Rodriguez-Rajo JF, Dopazo A, Jato V (2004) Environmental factors affecting the start of pollen season and concentrations of airborne Alnus pollen in two localities of Galicia (NW Spain). Ann Agric Environ Med 11:35–44PubMedGoogle Scholar
  50. Sabbah A, Daele J, Wade AG, Ben Soussen P, Attali P (1999) Comparison of the efficacy, safety, and onset of action of mizolastine, cetirizine, and placebo in the management of seasonal allergic rhinoconjunctivitis. Ann Allergy Asthma Immunol 83:319–325PubMedCrossRefGoogle Scholar
  51. Schelhaas MJ, Varis S, Schuck A, Nabuurs GJ (2006) EFISCEN Inventory Database. European Forest Institute, Joensuu, Finland.
  52. Skjøth CA, Hertel O, Ellermann T (2002) Use of the ACDEP trajectory model in the Danish nationwide background monitoring programme. Phys Chem Earth 27:1469–1477Google Scholar
  53. Skjøth CA, Sommer J, Stach A, Smith M, Brandt J (2007) The long range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clin Exp Allergy 37:1204–1212. doi:10.1111/j.1365-2222.2007.02771.x PubMedCrossRefGoogle Scholar
  54. Skjøth CA, Geels C, Hvidberg M, Hertel O, Brandt J, Frohn LM, Hansen KM, Hedegaard GB, Christensen J, Moseholm L (2008a) An inventory of tree species in Europe—an essential data input for air pollution modelling. Ecol Modell 217:292–304. doi:10.1016/j.ecolmodel.2008.06.023 CrossRefGoogle Scholar
  55. Skjøth CA, Sommer J, Brandt J, Hvidberg M, Geels C, Hansen K, Hertel O, Frohn L, Christensen J (2008b) Copenhagen—a significant source of birch (Betula) pollen? Int J Biometeorol 52:453–462. doi:10.1007/s00484-007-0139-y PubMedCrossRefGoogle Scholar
  56. Smith M, Emberlin J (2005) Constructing a 7-day ahead forecast model for grass pollen at north London, United Kingdom. Clin Exp Allergy 35:1400–1406. doi:10.1111/j.1365-2222.2005.02349.x PubMedCrossRefGoogle Scholar
  57. Smith M, Emberlin J (2006) A 30-day-ahead forecast model for grass pollen in north London, United Kingdom. Int J Biometeorol 50:233–242. doi:10.1007/s00484-005-0010-y PubMedCrossRefGoogle Scholar
  58. Smith M, Skjøth CA, Myszkowska D, Uruska A, Malgorzata P, Stach A, Balwierzg Z, Chlopek K, Piotrowska K, Kasprzyk I, Brandt J (2008) Long-range transport of Ambrosia pollen to Poland. Agric For Meteorol 148:1402–1411. doi:10.1016/j.agrformet.2008.04.005 CrossRefGoogle Scholar
  59. Sofiev M, Siljamo P, Ranta H, Rantio-Lehtimaki A (2006) Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J Biometeorol 50:392–402. doi:10.1007/s00484-006-0027-x PubMedCrossRefGoogle Scholar
  60. Spector SL (1997) Overview of comorbid associations of allergic rhinitis. J Allergy Clin Immunol 99:S773–S780. doi:10.1016/S0091-6749(97)70126-X PubMedCrossRefGoogle Scholar
  61. Spieksma FTM (1990) Pollinosis in Europe—new observations and developments. Rev Palaeobot Palynol 64:35–40. doi:10.1016/0034-6667(90)90114-X CrossRefGoogle Scholar
  62. Stace C (1997) New flora of the British Isles. Cambridge University PressGoogle Scholar
  63. Stach A, Smith M, Skjøth CA, Brandt J (2007) Examining Ambrosia pollen episodes at Poznañ (Poland) using back-trajectory analysis. Int J Biometeorol 51:275–286. doi:10.1007/s00484-006-0068-1 PubMedCrossRefGoogle Scholar
  64. Stach A, Emberlin J, Smith M, Adams-Groom B, Myszkowska D (2008) Factors that determine the severity of Betula spp. pollen seasons in Poland (Poznan and Krakow) and the United Kingdom (Worcester and London). Int J Biometeorol 52:311–321. doi:10.1007/s00484-007-0127-2 PubMedCrossRefGoogle Scholar
  65. Stern MA, Darnell R, Tudor D (1997) Can an antihistamine delay appearance of hay fever symptoms when given prior to pollen season? Allergy 52:440–444. doi:10.1111/j.1398-9995.1997.tb01026.x PubMedCrossRefGoogle Scholar
  66. Tripathi A, Patterson R (2001) Impact of allergic rhinitis treatment on quality of life. Pharmacoeconomics 19:891–899. doi:10.2165/00019053-200119090-00001 PubMedCrossRefGoogle Scholar
  67. Valenta R, Breiteneder H, Pettenburger K, Breitenbach M, Rumpold H, Kraft D, Scheiner O (1991) Homology of the major birch-pollen allergen, Bet v I, with the major pollen allergens of alder, hazel, and hornbeam at the nucleic acid level as determined by cross-hybridization. J Allergy Clin Immunol 87:677–682. doi:10.1016/0091-6749(91)90388-5 PubMedCrossRefGoogle Scholar
  68. Viander M, Koivikko A (1978) Seasonal symptoms of hypo-sensitized and untreated hay-fever patients in relation to birch pollen counts—correlations with nasal sensitivity, prick tests and RAST. Clin Allergy 8:387–396. doi:10.1111/j.1365-2222.1978.tb00474.x PubMedCrossRefGoogle Scholar
  69. Wagner M (2005) Global Forest Resources Assessment 2005, Country Report Luxemburg. 2005. Forestry Department, Food and Agriculture Organization of the United Nations. The Global Forest Resources Assessment 2005 Country Report Series, pp 1-33
  70. WHO (2003) Phenology and human health. In: Allergic disorders. WHO Regional Office for Europe, Copenhagen, pp 1–64Google Scholar

Copyright information

© ISB 2008

Authors and Affiliations

  • C. A. Skjøth
    • 1
  • M. Smith
    • 2
  • J. Brandt
    • 1
  • J. Emberlin
    • 2
  1. 1.Department of Atmospheric Environment, National Environmental Research InstituteUniversity of AarhusRoskildeDenmark
  2. 2.National Pollen and Aerobiology Research UnitUniversity of WorcesterWorcesterUK

Personalised recommendations