International Journal of Biometeorology

, Volume 52, Issue 7, pp 675–687

Long-range transport of beech (Fagus sylvatica L.) pollen to Catalonia (north-eastern Spain)

  • J. Belmonte
  • M. Alarcón
  • A. Avila
  • E. Scialabba
  • D. Pino
Original Paper

Abstract

Local and long-range transport of beech (Fagus sylvatica) pollen was analysed by using 23-year data (1983–2007) at six stations in Catalonia, Spain, and numerical simulations. Back trajectories and synoptic meteorology indicated a consistent north European provenance during beech pollen peak days. Specifically, the area from northern Italy to central Germany was the most probable source, as indicated by a source-receptor model based on back trajectories. For the event with the highest pollen levels (17 May 2004), back trajectories indicated a source in the Vosges (NE France) and the Schwarzwald (SW Germany) regions. By applying a mesoscale model (MM5) to this event, pollen transport could be further refined, allowing its entrance to Catalonia through the lower easternmost pass of the Pyrenees (the Alberes pass, 500 m a.s.l.) to be described. Hourly counts of Fagus pollen allowed the timing of pollen arrival during this episode to be matched with the model results regarding the above-mentioned passage. This study may help to interpret some results of modern beech genetic diversity and contribute to the understanding of paleopalynological records by taking long-range transport into consideration.

Keywords

Pollen Back trajectories Source receptor model Mesoscale transport model 

References

  1. Alarcón M, Alonso S, Cruzado A (1995) Atmospheric trajectory models for simulation of long-range transport and diffusion over the Western Mediterranean. J Environ Sci Health A30:9Google Scholar
  2. Belmonte J, Vendrell M, Roure JM, Vidal J, Botey J, Cadahía A (2000) Levels of Ambrosia pollen in the atmospheric spectra of Catalan aerobiological stations. Aerobiologia 16:93–99CrossRefGoogle Scholar
  3. Bolòs O, Vigo J (2005) Flora dels Països Catalans, vol II. Barcino, BarcelonaGoogle Scholar
  4. Bourgeois JC (2000) Seasonal and interanual pollen variability in snow layers of arctic ice caps. Rev Palaeobot Palynol 108:17–36CrossRefGoogle Scholar
  5. Bradshaw RHW (2004) Past anthropogenic influence on European forests and some possible genetic consequences. For Ecol Manage 197:203–212CrossRefGoogle Scholar
  6. Burczyck J, DiFazio SP, Adans WT (2004) Gene flow in forest trees: how far do genes really travel? For Genet 11:1–14Google Scholar
  7. Cecchi L, Morabito M, Domeneghetti MP, Crisci A, Onorari M, Orlandini S (2006) Long distance transport of ragweed pollen as a potential cause of allergy in central Italy. Ann Allergy Asthma Immunol 96:86–91PubMedCrossRefGoogle Scholar
  8. Charron A, Plaisance H, Sauvage S, Coddeville P, Galloo JC, Guillermo R (1998) Intercomparison between three receptor-oriented models applied to acidic species in precipitation. Sci Tot Environ 223:53–63CrossRefGoogle Scholar
  9. Cour P (1974) Nouvelles techniques de détection des flux et des retombeés polliniques: étude de la sédimentation des pollens et des spores à la surface du sol. Pollen Spores 16:103–141Google Scholar
  10. Draxler RR, Rolph GD (2003) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD
  11. Dudhia J (1993) A non-hydrostatic version of the Penn State-NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Month Weather Rev 121:1493–1513CrossRefGoogle Scholar
  12. Ellstrand NC (1992) Gene flow by pollen: implications for plant conservations genetics. Oikos 63:77–86CrossRefGoogle Scholar
  13. Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72:250–259CrossRefGoogle Scholar
  14. Frei T, Leuschner RM (2000) A change from grass pollen induced allergy to tree pollen induced allergy: 30 years of pollen observation in Switzerland. Aerobiologia 16:407–416CrossRefGoogle Scholar
  15. Franzén LG, Hjelmroos M, Kallberg P, Brotström-Lundeén E, Juntto S, Savolainen AL (1994) The “yellow snow” episode of northern Fennoscandia, March 1991—a case study of long-distance transport of soil, pollen and stable organic compounds. Atmos Environ 28:3587–3604CrossRefGoogle Scholar
  16. Grell AG, Dudhia J, Stauffer DR (1994) A description of the Fifth-Generation Penn State/NCAR Mesosclae Model (MM5) NCAR Technical Note NCAR/TN-398 + STR, National Center for Atmospheric Research, Boulder, CO,1994Google Scholar
  17. Hart MA, de Dear R, Beggs PJ (2007) A synoptic climatology of pollen concentrations during the six warmest months in Sydney, Australia. Int J Biometeorol 51:209–220PubMedCrossRefGoogle Scholar
  18. Heinzerling L, Frew AJ, Brindslev-Jensen C, Bonini S, Bousquet J, Bresciani M, Carlsen K-H, van Cauwenberge P, Darsow U, Fokkens WJ, Haahtela T, vanHoecke HL, Jessberger B, Kowalski ML, Kopp T, Lahoz CN, Lodrup CarlsenKC, Papadopoulus NG, Ring J, Schmid-Grendelmeier P, Vignola AM, Whörl S,Zuberbier T (2005) Standard skin prick testing and sensitization to inhalantallergens across Europe—a survey from the GA²LEN network. Allergy 60:1287–1300PubMedCrossRefGoogle Scholar
  19. van Hjelmroos M (1991) Evidence of long-distance transport of Betula pollen. Grana 30:215–228CrossRefGoogle Scholar
  20. Hjelmroos M van (1992) Long-range transport of Betula pollen grains and allergic symptoms. Aerobiologia 8:231–236CrossRefGoogle Scholar
  21. Hicks S, Isaksson E (2006) Assessing source areas of pollutants from studies of fly ash, charcoal, and pollen from Swalbard snow and ice. J Geophys Res 111, DOI 10.1029/2005JD006167
  22. Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265CrossRefGoogle Scholar
  23. Ickovic MR, Thibaudon M (1991) Allergenic significance of Fagaceae pollen. In: Amato GD, Spieksma FTM, Bonini S (eds) Allergenic pollen and pollinosis in Europe. Blackwell, Oxford, pp 98–108Google Scholar
  24. Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644PubMedCrossRefGoogle Scholar
  25. Lewis WH, Vinay P, Zenger VE (1983) Airborne and allergenic pollen of North America. Johns Hopkins University Press, Baltimore p 53Google Scholar
  26. Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates post-glacial gene flow among refugia. Proc Nat Acad Sci USA 99:14590–14594PubMedCrossRefGoogle Scholar
  27. Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, Latalouwa M, Litt T, Paule L, Roure JM, Tantau I, van der Knaap WO, Petit R, de Beaulieu JL (2006) A new scenario for the Quaternary history of European beach populations: paleobotanical evidence and genetic consequences. New Phytol 171:199–221PubMedCrossRefGoogle Scholar
  28. Prentice IC (1985) Pollen representation, source and basin size: towards a unified theory of pollen analysis. Quaternary Res 23:76–86CrossRefGoogle Scholar
  29. Prospero JM, Blades E, Mathison G, Naidu R (2005) Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia 21:1–19CrossRefGoogle Scholar
  30. Puhe J, Ulrich B (2001) Global climate change and human impacts on forest ecosystems: postglacial development, present situation, and future trends in Central Europe (Ecological Studies 143). Springer, BerlinGoogle Scholar
  31. Rocha Afonso ML (1990) 1. Fagus L. In: Castroviejo et al (eds) Flora Iberica, vol II. CSIC Real Jardín Botánico, MadridGoogle Scholar
  32. Rousseau DD, Duzer D, Cambon GV, Jolly D, Poulsen U, Ferrier J, Shevin P, Gros R (2003) Long distance transport of pollen to Greenland. Geophys Res Lett 30(14) DOI 10.1029/2003GL017539
  33. Rousseau DD, Schevin P, Duzer D, Cambon G, Ferrier J, Jolly D, Poulsen U (2006) New evidence of long distance pollen transport to southern Greenland in late spring. Rev Palaeobot Palynol 141:277–286CrossRefGoogle Scholar
  34. Schmidt-Lebuhn AN, Seltmann P, Kessler M (2007) Consequences of the pollination system on genetic structure and patterns of species distribution in the Andean genus Polylepis (Rosaceae): a comparative study. Pl Syst Evol 266:91–103CrossRefGoogle Scholar
  35. Seibert P, Kromp-Kolb H, Balterpensger U, Jost DT, Schwikowski M, Kasper A, Puxbaum H (1994) Trajectory analysis of aerosol measurements at high alpine sites. In: Borrel PM, Borrell P, Cvitas T, Seiler W (eds) Transport and transformation of pollutants in the troposphere. Academic, The Hague, pp 689–693Google Scholar
  36. Sharma CM, Khanduri VP (2007) Pollen-mediated gene flow in Himalayan long needle pine (Pinus roxburghii Sargent). Aerobiologia 23:153–158CrossRefGoogle Scholar
  37. Skjoth CA, Sommer J, Stach A, Smith M, Brandt J (2007) The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clin Exp Allergy 37:1204–1212, DOI 10.1111/j.1365–2222.2007.02771.x Google Scholar
  38. Smouse P, Dyer RJ, Westfall RD, Sork VL (2001) Two-generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution 55:260–271PubMedGoogle Scholar
  39. Stach A, Smith M, Skjoth CA, Brandt J (2007) Examining Ambrosia pollen episodes at Poznan (Poland) using back-trajectory analysis. Int J Biometeorol 51:275–286PubMedCrossRefGoogle Scholar
  40. Terradas J (1984) Introducció a l’ecologia del faig al Montseny. Diputació de Barcelona. BarcelonaGoogle Scholar
  41. Van Campo M, Quet L (1982) Transport par les vents de pollens et de poussières rouges du sud au nord de la Méditerranée. CR Acad Sci Paris Série II 295:289–292Google Scholar
  42. Wynn-Williams DD (1991) Aerobiology and colonization in Antarctica: the BIOTAS programme. Grana 30:380–393Google Scholar

Copyright information

© ISB 2008

Authors and Affiliations

  • J. Belmonte
    • 1
  • M. Alarcón
    • 2
  • A. Avila
    • 4
  • E. Scialabba
    • 1
  • D. Pino
    • 3
  1. 1.Unitat de Botànica and ICTAUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Deptartament de Física i Enginyeria NuclearUniversitat Politècnica de CatalunyaVilanova i La GeltrúSpain
  3. 3.Deptartament de Física AplicadaUniversitat Politècnica de CatalunyaCasltelldefelsSpain
  4. 4.CREAFUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations