Reconstructing dry and wet summers in SE Slovenia from oak tree-ring series

  • Katarina Čufar
  • Martin De Luis
  • Dieter Eckstein
  • Lučka Kajfež-Bogataj
Original Paper


We present a reconstruction of the June weather conditions in SE Slovenia from 1497 to 2003 based on the De Martonne aridity index (AI). The AI were derived from oak (Quercus spp.) tree-ring series of living trees and historic wood, which exhibited a clear response to June precipitation (positive) and temperature (negative). In the reconstructed AI time series we classified negative and positive deviations from the mean as strong (±1.28 SD) or extreme (±1.645 SD), and thus identified 50 years with a likely dry and hot June, as well as 40 years with a likely wet and cool June. Historical sources and chronicles were used to validate the AI reconstruction in the pre-instrumental period before 1896. The years 1501, 1540, 1546, 1616, 1718, 1788, 1822, 1834, 1839 and 1841, with extreme or strong negative AI deviations, are mentioned in Slovenian chronicles because of crop failures, droughts or extremely hot summers. The years 1691, 1705, 1798, 1799 and 1847, with extreme or strong positive AI deviations, are mentioned as years with a cool and rainy summer. We discuss the relevance of June weather conditions for the growth of plants in the region between the Alps, the Mediterranean and the continental Pannonian lowland, and the possible changes due to the current climate change scenario.


Dendroclimatology Quercus spp. De Martonne aridity index Precipitation Temperature 



The climatic data originated from the Environmental Agency of the Republic of Slovenia within the Ministry of the Environment and Spatial Planning. We are grateful to Mateja Belak from the Institute of Archaeology for preparing the maps. The work was funded by the Ministry of Higher Education, Science and Technology of the Republic of Slovenia, Research Program “Lesarstvo”, and by the Spanish Ministry of Education and Science, project CGL2005–04270.


  1. Akkemik Ü, Aras A (2005) Reconstruction (1689–1994 AD) of April–August precipitation in the southern part of central Turkey. Int J Climatol 25:537–548CrossRefGoogle Scholar
  2. Akkemik Ü, Dagdeviren N, Aras A (2005) A preliminary reconstruction (A.D. 1635–2000) of spring precipitation using oak tree rings in the western Black Sea region of Turkey. Int J Biometeorol 49:297–302PubMedCrossRefGoogle Scholar
  3. Ažnik M, Kajfež-Bogataj L (1982) Devetletni gnojilni poskus na koruzi. Zbornik Biotehniške fakultete Univerze Edvarda Kardelja Ljubljana 39:7–21Google Scholar
  4. Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675CrossRefGoogle Scholar
  5. Aussenac G (2002) Ecology and ecophysiology of circum-Mediterranean firs in the context of climate change. Ann For Sci 59:823–832CrossRefGoogle Scholar
  6. Bergant K, Kajfež-Bogataj L (2005) N-PLS regression as empirical downscaling tool in climate change studies. Theor Appl Climatol 81:11–23CrossRefGoogle Scholar
  7. Briffa K, Jones PD (1990) Basic chronology statistics and assessment. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the Environmental Sciences. International Institute for Applied Systems Analysis. Kluwer, Boston, pp 137–152Google Scholar
  8. Briffa KR, Bartholin TS, Eckstein D, Jones PD, Karlén W, Schweingruber FH, Zetterberg P (1990) A 1,400-year tree-ring record of summer temperatures in Fennoscandia. Nature 346:434–439CrossRefGoogle Scholar
  9. Brus R (2005) Dendrologija za gozdarje (Dendrology for foresters). Univerza v Ljubljani, LjubljanaGoogle Scholar
  10. Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–370CrossRefGoogle Scholar
  11. Črepinšek Z, Kajfež-Bogataj L, Bergant K (2006) Modelling of weather variability effect on phytophenology. Ecol Model 194:256–265CrossRefGoogle Scholar
  12. Čufar K (2007) Dendrochronology and past human activity: a review of advances since 2000. Tree-Ring Res 63:47–60CrossRefGoogle Scholar
  13. Čufar K, De Luis M, Zupančič M, Eckstein D (2008) A 548-year long tree-ring chronology of oak (Quercus spp.) for SE Slovenia and its significance as dating tool and climate archive. Tree-Ring Res 64: in pressGoogle Scholar
  14. De Martonne E (1926) L’indice d’aridité. Bulletin de l’Association des Géographes Français 9:3–5Google Scholar
  15. Diaci J (2007) Prilagajanje gojenja gozdov podnebnim spremembam (Adapting silviculture to climate change). In: Jurc M (ed) Podnebne spremembe: vpliv na gozd in gozdarstvo (Climate change: impact on forest and forestry). Studia Forestalia Slovenica 130. Biotechnical Faculty, Department of Forestry and Renewable Forest Resources Slovenia, pp 117–132Google Scholar
  16. Eckstein D, Schmidt B (1974) Dendroklimatologische untersuchungen an Stieleichen aus dem Maritimen Klimagebiet Schleswig-Holsteins. Angew Bot 48:371–383Google Scholar
  17. Frank D, Esper J (2005) Temperature reconstructions and comparisons with instrumental data from a tree-ring network for the European Alps. Int J Climatol 25:1437–1454CrossRefGoogle Scholar
  18. Fritts HC, Guiot J, Gordon G (1990) Verification. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: Applications in the environmental sciences. International Institute for Applied Systems Analysis/Kluwer, Boston, pp 178–184Google Scholar
  19. Gričar J (2006) Vpliv temperature in padavin na ksilogenezo pri jelki (Abies alba) in smreki (Picea abies) (Effect of temperature and precipitation on xylogenesis in silver fir (Abies alba) and Norway spruce (Picea abies)). Doctoral dissertation, University of Ljubljana, LjubljanaGoogle Scholar
  20. Holmes RL (1994) Dendrochronology program library user’s manual. Laboratory of Tree-Ring Research. University of Arizona, TucsonGoogle Scholar
  21. Hughes MK (2002) Dendrochronology in climatology—the state of the art. Dendrochronologia 20:95–116CrossRefGoogle Scholar
  22. Hughes MK, Kuniholm PI, Garfin GM, Latini C, Eischeid J (2001) Aegean tree-ring signature years explained. Tree-Ring Res 57:67–73Google Scholar
  23. Kajfež-Bogataj L, Bergant K (2005) Podnebne spremembe v Sloveniji in suša (Climate change and drought in Slovenia). Ujma 19:37–41Google Scholar
  24. Kelly PM, Leuschner HH, Briffa KR, Harris IC (2002) The climatic interpretation of pan-European signature years in oak ring-width series. Holocene 12:689–694CrossRefGoogle Scholar
  25. Martinelli N (2004) Climate from dendrochronology: latest developments and results. Global Planet Change 40:129–139CrossRefGoogle Scholar
  26. Metzger MJ, Bunce RGH, Jongman RHG, Mücher CA, Watkins JW (2005) A climatic stratification of the environment of Europe. Global Ecol Biogeogr 14:549–563CrossRefGoogle Scholar
  27. Neumann J, Dettwiller J (1990) Great historical events that were significantly affected by the weather: Part 9, the year leading to the revolution of 1789 in France (II). Bull Am Meteorol Soc 71:33–41CrossRefGoogle Scholar
  28. Neuwirth B, Schweingruber FH, Winiger M (2007) Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia 24:79–89CrossRefGoogle Scholar
  29. Ogrin D (1996) Podnebni tipi v Sloveniji (The climate types in Slovenia). Geografski vestnik 68:39–56Google Scholar
  30. Ogrin D (2002) Dry and wet years in Submediterranean Slovenia from the 14th to the mid-19th century. Acta Univ Palacki Olomuc Fac Rerum Nat Geogr 37:55–62Google Scholar
  31. Pilcher JR, Gray B (1982) The relationship between oak tree growth and climate in Britain. J Ecol 70:297–304CrossRefGoogle Scholar
  32. Pfister C (2005) Historical records as evidence in the climate change debate. In: Weather catastrophes and climate change. Munich Re Group Google Scholar
  33. PRUDENCE (2005) Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects. Final Report EVK2-CT2001–00132, 269 p. (
  34. Pučnik J (1980) Razvoj vremenoslovja na slovenskem. Slovenska matica, LjubljanaGoogle Scholar
  35. Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170:301–310PubMedCrossRefGoogle Scholar
  36. Santini A, Bottacci A, Gellini R (1994) Preliminary dendroecological survey on pedunculate oak (Quercus robur L) stands in Tuscany (Italy). Ann For Sci 51:1–10CrossRefGoogle Scholar
  37. Trontelj M (1997) Kronika izrednih vremenskih dogodkov 20. stoletja. Hidrometeorološki zavod Republike Slovenije, LjubljanaGoogle Scholar
  38. Vogt JV, Somma F (eds) (2000) Drought and drought mitigation in europe. Kluwer, DordrechtGoogle Scholar
  39. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213CrossRefGoogle Scholar

Copyright information

© ISB 2008

Authors and Affiliations

  • Katarina Čufar
    • 1
  • Martin De Luis
    • 2
  • Dieter Eckstein
    • 3
  • Lučka Kajfež-Bogataj
    • 4
  1. 1.Department of Wood Science and Technology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Dept. GeografíaUniversity of ZaragozaZaragozaSpain
  3. 3.Department of Wood Science, Division Wood BiologyUniversity of HamburgHamburgGermany
  4. 4.Agronomy Department, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations