Advertisement

International Journal of Biometeorology

, Volume 52, Issue 6, pp 511–520 | Cite as

Assessing onset and length of greening period in six vegetation types in Oaxaca, Mexico, using NDVI-precipitation relationships

  • L. Gómez-Mendoza
  • L. Galicia
  • M. L. Cuevas-Fernández
  • V. Magaña
  • G. Gómez
  • J. L. Palacio-Prieto
Original Paper

Abstract

Variations in the normalized vegetation index (NDVI) for the state of Oaxaca, in southern Mexico, were analyzed in terms of precipitation anomalies for the period 1997–2003. Using 10-day averages in NDVI data, obtained from AVHRR satellite information, the response of six types of vegetation to intra-annual and inter-annual fluctuations in precipitation were examined. The onset and temporal evolution of the greening period were studied in terms of precipitation variations through spectral analysis (coherence and phase). The results indicate that extremely dry periods, such as those observed in 1997 and 2001, resulted in low values of NDVI for much of Oaxaca, while good precipitation periods produced a rapid response (20–30 days of delay) from a stressed to a non-stressed condition in most vegetation types. One of these rapid changes occurred during the transition from dry to wet conditions during the summer of 1998. As in many parts of the tropics and subtropics, the NDVI reflects low frequency variations in precipitation on several spatial scales. Even after long dry periods (2001–2002), the various regional vegetation types are capable of recovering when a good rainy season takes place, indicating that vegetation types such as the evergreen forests in the high parts of Oaxaca respond better to rainfall characteristics (timing, amount) than to temperature changes, as is the case in most mid-latitudes. This finding may be relevant to prepare climate change scenarios for forests, where increases in surface temperature and precipitation anomalies are expected.

Keywords

Climate variability NDVI Phenology Tropical forest Temperate forest 

Notes

Acknowledgments

This study was supported by the DGAPA-PAPIIT, and is part of the doctoral research of the first author. CONACYT and DGEP-UNAM provided financial support. The authors are grateful to René Ramos for his technical support, to Miguel Cortéz†, Javier Espinosa-Cruickshank and Adelina Albanil, for sharing climate data; and to Laura Arriaga, Lorenzo Vázquez-Selem and José Villanueva for their critical comments that improved a previous draft, and two anonymous reviewers.

References

  1. Al-Bakri JT, Suleiman AS (2004) NDVI response to rainfall in different ecological zones in Jordan. Int J Remote Sens 19:3897–3912CrossRefGoogle Scholar
  2. Blackman RB, Turkey WF (1958) The measurement of power spectra. Dover, New YorkGoogle Scholar
  3. Bonan G (2002) Ecological climatology: Concepts and applications. Cambridge University Press, Cambridge, UKGoogle Scholar
  4. Bordi I, Fraedrich K, Jiang JM, Sutera A (2004) Spatio-temporal variability of dry and wet periods in eastern China. Theor Appl Climatol 79:81–91CrossRefGoogle Scholar
  5. Brown BG, Katz RW (1991) Use of statistical methods in the search for teleconnections: past, present, and future. In: Glanz M, Katz R, Nicholls N (eds) Teleconnections linking worldwide climate anomalies: scientific basis and societal impact. Cambridge University Press, Cambridge, UK, pp 371–400Google Scholar
  6. Cao M, Prince SD, Small J, Goetz SJ (2004) Remotely sensed interannual variations and trends in terrestrial net primary productivity 1981–2000. Ecosystems 7:233–242CrossRefGoogle Scholar
  7. Centeno-García E (2004). Configuración geológica del estado. In: García AJ, Ordóñez MJ, Briones M (coords.) Biodiversidad de Oaxaca. México D.F, Mexico: Instituto de Biología, Universidad Nacional Autónoma de México, Fondo Oaxaqueño para la Conservación de la Naturaleza, and World Wildlife Fund, pp 29–42Google Scholar
  8. Chen X, Xu C, Tan Z (2001) An analysis of relationship among plant community phenology and seasonal metrics of normalized difference vegetation index in northern part of the monsoon region of China. Int J Biometeorol 45:170–177CrossRefGoogle Scholar
  9. Churkina G, Running SW (1998) Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems 1:206–215CrossRefGoogle Scholar
  10. Ciais P, Friedlingstein P, Friend A, Schimel DS (2001) Integrating global models of terrestrial primary productivity. In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic, San Diego, pp 449–478CrossRefGoogle Scholar
  11. Cramer W, Olson RJ, Prince SD, Scurlock JMO (2001) Determining present patterns of global productivity. In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic, San Diego, pp 429–448CrossRefGoogle Scholar
  12. Cuevas-Fernández ML (2004) Patrones regionales de productividad primaria neta en el Estado de Oaxaca: El uso de la percepción remota en los análisis espaciales. Tesis. Licenciatura en Geografía. Facultad de Filosofía y Letras. Mexico D.F, México: Universidad Nacional Autónoma de MéxicoGoogle Scholar
  13. Ezcurra E (1990) Programa Orden. Centro de Ecología, Universidad Nacional Autónoma de MéxicoGoogle Scholar
  14. García E (1998) Precipitación total anual. Mapa escala 1:1 000 000. Mexico, D.F, México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). MéxicoGoogle Scholar
  15. Ghil M, Yiou P (1996) Spectral methods: what they can and cannot do for climatic time series. In: Anderson DLT, Willebrand J (eds) Decadal climate variability: dynamics and predictability. Springer, Berlin, pp 445–482CrossRefGoogle Scholar
  16. Gómez-Mendoza L, Galicia L, Aguilar-Santelises R (2008) Sensibilidad de grupos funcionales al cambio climático en la Sierra Norte de Oaxaca, México. Boletín de Investigaciones Geográficas (in press)Google Scholar
  17. Gordon HR, Brown JW, Evans RH (1988) Exact Raleigh scattering calculation for use with the Nimbus 7 coastal zone color scanner. Appl Opt 27:2111–2122CrossRefGoogle Scholar
  18. Higgins RW, Yao Y, Wang XL (1997) Influence of the North American monsoon system on the U.S. summer precipitation regime. J Climate 10:2600–2622CrossRefGoogle Scholar
  19. Hill MJ, Donald GE (2003) Estimating spatio-temporal patterns of agricultural productivity in fragmented landscapes using AVHRR NDVI time series. Remote Sens Environ 84:367–384CrossRefGoogle Scholar
  20. INEGI, Instituto Nacional de Estadística, Geografía e Informática. (2002). Conjunto de datos vectoriales de la carta de Uso de Suelo y Vegetación. Serie II. Escala 1:250 000. México, D.F., Mexico:Instituto Nacional de Estadística, Geografía e InformáticaGoogle Scholar
  21. Jackson RB, Lechowicz MJ, Li X, Mooney HA (2001) Phenology, growth, and allocation in global terrestrial productivity. In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic, San Diego, pp 61–82CrossRefGoogle Scholar
  22. Jobbágy EG, Sala OE, Paruelo JM (2002) Patterns and controls of primary production in the Patagonian steppe: a remote sensing approach. Ecology 83:307–319Google Scholar
  23. Justice CO, Holben BN, Gwynne MO (1986) Monitoring East African vegetation usng AVHRR data. Int J Remote Sens 7:1453–1474CrossRefGoogle Scholar
  24. Kramer K, Leinonen I, Loustau D (2000) The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forest ecosystems: an overview. Int J Biometeorol 44:67–75CrossRefGoogle Scholar
  25. Magaña V, Amador JA, Medina S (1999) The midsummer drought over Mexico and Central America. J Climate 12:1577–1588CrossRefGoogle Scholar
  26. Magaña V, Vázquez JL, Pérez JL, Pérez J (2003) Impact of El Niño on precipitation in Mexico. Geofísica Internacional 3:313–330Google Scholar
  27. National Center of Environmental Programme -National Oceanic and Atmosphere Administration (NCEP-NOAA) (1994) http://ingrid.Ideo.columbia.edu/SOURCES
  28. Neri C (2004) Evaluación del riesgo en el sector agrícola por la variabilidad climática. Tesis. Licenciatura en Geografía. Facultad de Filosofía y Letras. Mexico, D.F. México: Universidad Nacional Autónoma de MéxicoGoogle Scholar
  29. Nicholson SE, Tucker CJ, Ba MB (1998) Desertification, drought, and surface vegetation: an example from the West African Sahel. Bull Am Meteorol Soc 79:815–829CrossRefGoogle Scholar
  30. Nightingale JM, Phinn SR (2003) Assesment of relationship between precipitation and satellite derived by vegetation condition within South Australia. Aust Geogr Stud 2:180–195CrossRefGoogle Scholar
  31. Ortiz MA, Hernández JR, Figueroa JM (2004) Reconocimiento fisiográfico y geomorfológico. In: García AJ, Ordóñez M, Briones M (coords.), Biodiversidad de Oaxaca. Mexico, D.F., México: Instituto de Biología, Universidad Nacional Autónoma de México, Fondo Oaxaqueño para la Conservación de la Naturaleza, and World Wildlife Fund, pp 43–54Google Scholar
  32. Paruelo JM, Jobbágy EG, Sala OE (2001) Current distribution of ecosystem functional types in temperate South America. Ecosystems 4:683–698CrossRefGoogle Scholar
  33. Paruelo JM, Lauenroth WK (1998) Interannual variability of NDVI and its relationship to climate for North American shrublands and grasslands. J Biogeogr 25:721–733CrossRefGoogle Scholar
  34. Poveda G, Salazar LF (2004) Annual and interannual (ENSO) variability of spatial scaling properties of a vegetation index (NDVI) in Amazonia. Remote Sens Environ 93:391–401CrossRefGoogle Scholar
  35. Prasad VK, Anuradha E, Badinath KVS (2005) Climatic controls of vegetation vigor in four contrasting forest types of India-evaluating from National Oceanic and Atmospheric Administration’s Advanced Very High Resolution Radiometer datasets (1990–2000). Int J Biometeorol 50:6–16CrossRefGoogle Scholar
  36. Ruimy A, Saugier B, Dedeu G (1994) Methodology for estimation of terrestrial net primary production for remotely sensed data. J Geophys Res 99:5263–5283CrossRefGoogle Scholar
  37. Rundquist BC, Harrington JA, Goodin DG (2000) Mesoscale satellite bioclimatology. Prof Geogr 52:331–344CrossRefGoogle Scholar
  38. Salinas-Zavala CA, Douglas AV, Díaz HF (2002) Interannual variability of NDVI in northwest Mexico. Associated climatic mechanisms and ecological implications. Remote Sens Environ 82:417–430CrossRefGoogle Scholar
  39. Shilong P, Jingyun F, Wei J, Qinghua G, Jinhu K, Shu T (2004) Variation in a satellite-based vegetation index in relation to climate in China. J Veg Sci 15:219–226CrossRefGoogle Scholar
  40. Therrell MD, Stahle DW, Cleaveland MK, Villanueva-Díaz J (2002) Warm season tree growth and precipitation over Mexico. J Geophys Res 107(d14):4205CrossRefGoogle Scholar
  41. Tosic I, Unkasevic M (2005) Analysis of precipitation series for Belgrade. Theor Appl Climatol 80:67–77CrossRefGoogle Scholar
  42. Trejo I (2004) Clima. In: García AJ, Ordóñez MJ, Briones M (eds), Biodiversidad de Oaxaca. México, D.F., México: Instituto de Biología, Universidad Nacional Autónoma de México, Fondo Oaxaqueño para la Conservación de la Naturaleza, and World Wildlife Fund. Mexico, pp 67–85Google Scholar
  43. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777CrossRefGoogle Scholar
  44. Tucker CJ, Vanpraet CL, Sharman MJ, Van Ittersum G (1985) Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984. Remote Sens Environ 17:233–249CrossRefGoogle Scholar
  45. Villers L, Trejo I (1998) El impacto del cambio climático en los bosques y áreas naturales protegidas de México. Interciencia 23:10–19Google Scholar
  46. Von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  47. White MA, Nemani RR, Thornton PE, Running SW (2002) Satellite evidence of phenological differences between urbanized and rural areas of the eastern United States deciduous broadleaf forest. Ecosystems 5:260–273CrossRefGoogle Scholar
  48. Wilks DS (1995) Statistical methods in the atmospheric sciences: an introduction. Academic, San DiegoGoogle Scholar
  49. Yu F, Price K, Ellis J, Shi P (2003) Response of seasonal vegetation development to climatic variations in eastern central Asia. Remote Sens Environ 87:42–54CrossRefGoogle Scholar

Copyright information

© ISB 2008

Authors and Affiliations

  • L. Gómez-Mendoza
    • 1
    • 2
  • L. Galicia
    • 1
  • M. L. Cuevas-Fernández
    • 1
  • V. Magaña
    • 2
  • G. Gómez
    • 1
  • J. L. Palacio-Prieto
    • 1
  1. 1.Instituto de GeografíaUniversidad Nacional Autónoma de MéxicoCoyoacánMexico
  2. 2.Centro de Ciencias de la AtmósferaUniversidad Nacional Autónoma de MéxicoCoyoacánMexico

Personalised recommendations