International Journal of Biometeorology

, Volume 52, Issue 6, pp 535–547 | Cite as

Weather-induced ischemia and arrhythmia in patients undergoing cardiac rehabilitation: another difference between men and women

  • Alexandra Schneider
  • Angela Schuh
  • Friedrich-Karl Maetzel
  • Regina Rückerl
  • Susanne Breitner
  • Annette Peters
Original Paper


Given the accumulating evidence that people with underlying heart disease are a particularly vulnerable group for triggers like changing meteorological parameters, the objective of this longitudinal study was to analyze the influence of weather parameters on blood pressure, arrhythmia and ischemia in cardiovascular patients. A panel study with repeated measurements was conducted in a rehabilitation clinic in Timmendorfer Strand (Baltic Sea, Germany) with 872 cardiovascular patients. Heart rate, blood pressure and electrocardiography changes were measured during repeated bicycle ergometries. Generalized Estimating Equations were used for regression analyses of immediate, delayed and cumulative influences of the daily measured meteorological data. For men, a decrease in air temperature and in water vapor pressure doubled the risk of ST-segment depression during ergometry [odds ratio (OR) for 1 day delay: 1.88 (1.24; 2.83) for air temperature] with a delay of 1–2 days. For women, an increase of their heart rate before the start of the ergometry [same day: 4.36 beats/min (0.99; 7.74) for air temperature] and a 2- to 3-fold higher risk for ventricular ectopic beats [1 day delay: OR 2.43 (1.17; 5.05) for air temperature] was observed with an increase in temperature and water vapor pressure in almost all analyzed time-windows. The study indicates that meteorological parameters can induce changes in heart function which may lead to adverse cardiovascular events especially in susceptible, diseased individuals. The observed effect on ST-segment depression could be a link between the association of weather changes and cardiovascular morbidity and mortality.


Epidemiology Meteorological factors Weather Rehabilitation Ergometry 


  1. ACE Inhibitor Myocardial Infarction Collaborative Group (1998) Indications for ACE inhibitors in the early treatment of acute myocardial infarction: systematic overview of individual data from 100,000 patients in randomized trials. ACE Inhibitor Myocardial Infarction Collaborative Group. Circulation 97:2202–2212CrossRefGoogle Scholar
  2. Antithrombotic Trialists’ Collaboration. (2002) Collaborative meta-analysis of randomized trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high patients. BMJ 324:71–89CrossRefGoogle Scholar
  3. Baker-Blocker A (1982) Winter weather and cardiovascular mortality in Minneapolis-St. Paul. Am J Public Health 72:261–265CrossRefGoogle Scholar
  4. Ballester F, Corella D, Pérez-Hoyos S, Sáez M, Hervás A (1997) Mortality as a Function of Temperature. A Study in Valencia, Spain, 1991–1993. Int J Epidemiol 26:551–561CrossRefGoogle Scholar
  5. Barnett AG, Dobson AJ, McElduff P, Salomaa V, Kuulasmaa K, Sans S (2005) Cold periods and coronary events: an analysis of populations worldwide. J Epidemiol Community Health 59:551–557CrossRefGoogle Scholar
  6. Boulay F, Berthier F, Sisteron O, Gendreike Y, Gibelin P (1999) Seasonal variation in chronic heart failure hospitalizations and mortality in France. Circulation 100:280–286CrossRefGoogle Scholar
  7. Braga AL, Zanobetti A, Schwartz J (2002) The effect of weather on respiratory and cardiovascular deaths in 12 U.S. cities. Environ Health Perspect 110:859–863CrossRefGoogle Scholar
  8. Danet S, Richard F, Montaye M, Beauchant S, Lemaire B, Graux C, Cottel D, Marecaux N, Amouyel P (1999) Unhealthy effects of atmospheric temperature and pressure on the occurrence of myocardial infarction and coronary deaths. A 10-year survey: the Lille-World Health Organization MONICA project (Monitoring trends and determinants in cardiovascular disease). Circulation 100:E1–E7CrossRefGoogle Scholar
  9. Deutscher Wetterdienst [German Network for Meteorology]. (1976) Aspirations-Psychrometer-Tafeln. [Aspiration Psychrometer Tables.]. Vieweg&Sohn Verlags gesellschaft, BraunschweigGoogle Scholar
  10. Diaz J, Garcia R, Velazquez de Castro F, Hernandez E, Lopez C, Otero A (2002a) Effects of extremely hot days on people older than 65 years in Seville (Spain) from 1986 to 1997. Int J Biometeorol 46:145–149CrossRefGoogle Scholar
  11. Diaz J, Jordan A, Garcia R, Lopez C, Alberdi JC, Hernandez E, Otero A (2002b) Heat waves in Madrid 1986–1997: effects on the health of the elderly. Int Arch Occup Environ Health 75:163–170CrossRefGoogle Scholar
  12. Diaz J, Linares C, Tobias A (2006) Impact of extreme temperatures on daily mortality in Madrid (Spain) among the 45–64 age-group. Int J Biometeorol 50:342–348CrossRefGoogle Scholar
  13. Diggle PJ, Heagerty P, Liang KY, Zeger SL (2003) Analysis of Longitudinal Data. Oxford University Press, New YorkGoogle Scholar
  14. Douglas AS, Dunnigan MG, Allan TM, Rawles JM (1995) Seasonal variation in coronary heart disease in Scotland. J Epidemiol Community Health 49:575–582CrossRefGoogle Scholar
  15. Elwood PC, Beswick A, O’Brien JR, Renaud S, Fifield R, Limb ES, Bainton D (1993) Temperature and risk factors for ischaemic heart disease in the Caerphilly prospective study. Br Heart J 70:520–523CrossRefGoogle Scholar
  16. Enquselassie F, Dobson AJ, Alexander HM, Steele PL (1993) Seasons, temperature and coronary disease. Int J Epidemiol 22:632–636CrossRefGoogle Scholar
  17. Faust V (1978) Biometeorologie: der Einfluss von Wetter und Klima auf Gesunde und Kranke. [Biometeorology: The influence of weather and climate on healthy and sick individuals.]. Hippokrates, StuttgartGoogle Scholar
  18. Fitzmaurice GM, Laird NM, Ware JH (2004) Applied Longitudinal Analysis. John Wiley and Sons, Inc., Hoboken, New JerseyGoogle Scholar
  19. Freemantle N, Cleland J, Young P, Mason J, Harrison J (1999) Beta blockade after myocardial infarction: systematic review and meta regression analysis. BMJ 318:1730–1737CrossRefGoogle Scholar
  20. Goodman PG, Dockery DW, Clancy L (2004) Cause-specific mortality and the extended effects of particulate pollution and temperature exposure. Environ Health Perspect 112:179–185CrossRefGoogle Scholar
  21. Graham TE (1988) Thermal, metabolic, and cardiovascular changes in men and women during cold stress. Med Sci Sports Exerc 20:S185–S192CrossRefGoogle Scholar
  22. Hajat S, Haines A (2002) Associations of cold temperatures with GP consultations for respiratory and cardiovascular disease amongst the elderly in London. Int J Epidemiol 31:825–830CrossRefGoogle Scholar
  23. Hellermann JP, Goraya TY, Jacobsen SJ, Weston SA, Reeder GS, Gersh BJ, Redfield MM, Rodeheffer RJ, Yawn BP, Roger VL (2003) Incidence of heart failure after myocardial infarction: is it changing over time? Am J Epidemiol 157:1101–1107CrossRefGoogle Scholar
  24. Hollmann W, Hettinger T (1990) Sportmedizin [Sports Medicine]. Schattauer, StuttgartGoogle Scholar
  25. Jokhadar M, Jacobsen SJ, Reeder GS, Weston SA, Roger VL (2004) Sudden death and recurrent ischemic events after myocardial infarction in the community. Am J Epidemiol 159:1040–1046CrossRefGoogle Scholar
  26. Kalkstein LS, Valimont KM (1986) An Evaluation of summer discomfort in the United States using a relative climatological index. Am Meteorol Soc 67:842–848CrossRefGoogle Scholar
  27. Keatinge WR (1998) Mortality in winter. Eur Heart J 19:361–362Google Scholar
  28. Keatinge WR, Coleshaw SR, Cotter F, Mattock M, Murphy M, Chelliah R (1984) Increases in platelet and red cell counts, blood viscosity, and arterial pressure during mild surface cooling: factors in mortality from coronary and cerebral thrombosis in winter. Br Med J (Clin Res Ed) 289:1405–1408CrossRefGoogle Scholar
  29. Keatinge WR, Donaldson GC, Bucher K, Jendritzky G, Cordioli E, Martinelli M, Katsouyanni K, Kunst AE, McDonald C, Nayha S, Vuori I (2000) Winter mortality in relation to climate. Int J Circumpolar Health 59:154–159Google Scholar
  30. Kim H, Kim Y, Hong YC (2003) The lag-effect pattern in the relationship of particulate air pollution to daily mortality in Seoul, Korea. Int J Biometeorol 48:25–30CrossRefGoogle Scholar
  31. Kveton V (1991) Weather fronts and acute myocardial infarction. Int J Biometeorol 35:10–17CrossRefGoogle Scholar
  32. Latini R, Maggioni AP, Flather M, Sleight P, Tognoni G (1995) ACE inhibitor use in patients with myocardial infarction. Summary of evidence from clinical trials. Circulation 92:3132–3137CrossRefGoogle Scholar
  33. LIPID Study Group (1998) Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 339(19):1349–1357CrossRefGoogle Scholar
  34. Löllgen H (1983) Ergometrie in der Praxis (Unter Berücksichtigung betriebsärztlicher Untersuchungen). [Ergometry in practice (in consideration of examinations by company medical officers).]. perimed Fachbuch-Verlagsgesellschaft mbH, ErlangenGoogle Scholar
  35. Löllgen H, Winter UJ, Erdmann E. (1995) Ergometrie. Belastungsuntersuchungen in Klinik und Praxis. [Ergometry. Physical endurance capacity measurements in clinic and practice.]. Springer, Berlin Heidelberg New YorkGoogle Scholar
  36. Marchant B, Donaldson G, Mridha K, Scarborough M, Timmis AD (1994) Mechanisms of cold intolerance in patients with angina. J Am Coll Cardiol 23:630–636CrossRefGoogle Scholar
  37. McGovern PG, Jacobs DR, Shahar E, Arnett DK, Folsom AR, Blackburn H, Luepker RV (2001) Trends in acute coronary heart disease mortality, morbidity, and medical care from 1985 through 1997. The Minnesota heart survey. Circulation 104:19–24CrossRefGoogle Scholar
  38. Mittleman MA, Maclure M, Sherwood JB, Mulry RP, Tofler GH, Jacobs SC, Friedman R, Benson H, Muller JE (1995) Triggering of acute myocardial infarction onset by episodes of anger. Determinants of Myocardial Infarction Onset Study Investigators. Circulation 92:1720–1725CrossRefGoogle Scholar
  39. Modesti PA, Morabito M, Bertolozzi I, Massetti L, Panci G, Lumachi C, Giglio A, Bilo G, Caldara G, Lonati L, Orlandini S, Maracchi G, Mancia G, Gensini GF, Parati G (2006) Weather-related changes in 24-hour blood pressure profile: effects of age and implications for hypertension management. Hypertension 47:155–161CrossRefGoogle Scholar
  40. Nayha S (2002) Cold and the risk of cardiovascular diseases. A review. Int J Circumpolar Health 61:373–380CrossRefGoogle Scholar
  41. Ornato JP, Peberdy MA, Chandra NC, Bush DE (1996) Seasonal pattern of acute myocardial infarction in the National Registry of Myocardial Infarction. J Am Coll Cardiol 28:1684–1688CrossRefGoogle Scholar
  42. Pekkanen J, Peters A, Hoek G, Tiittanen P, Brunekreef B, de Hartog J, Heinrich J, Ibald-Mulli A, Kreyling WG, Lanki T, Timonen KL, Vanninen E (2002) Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease: the Exposure and Risk Assessment for Fine and Ultrafine Particles in Ambient Air (ULTRA) study. Circulation 106:933–938CrossRefGoogle Scholar
  43. Pell JP, Cobbe SM (1999) Seasonal variations in coronary heart disease. QJM 92:689–696CrossRefGoogle Scholar
  44. Peters A, Liu E, Verrier RL, Schwartz J, Gold DR, Mittleman M, Baliff J, Oh JA, Allen G, Monahan K, Dockery DW (2000) Air pollution and incidence of cardiac arrhythmia. Epidemiology 11:11–17CrossRefGoogle Scholar
  45. Peters A, von Klot S, Heier M, Trentinaglia I, Hormann A, Wichmann HE, Löwel H (2004) Exposure to traffic and the onset of myocardial infarction. N Engl J Med 351:1721–1730CrossRefGoogle Scholar
  46. Ridker PM, Hennekens CH (1991) Haemostatic risk factors for coronary heart disease. Circulation 83:1098–1100CrossRefGoogle Scholar
  47. Rosamond WD, Chambless LE, Folsom AR, Cooper LS, Conwill DE, Clegg L, Wang CH, Heiss G (1998) Trends in the incidence of myocardial infarction and in mortality due to coronary heart disease, 1987 to 1994. N Engl J Med 339:861–867CrossRefGoogle Scholar
  48. Sarna S, Romo M, Siltanen P (1977) Myocardial infarction and weather. Ann Clin Res 9:222–232Google Scholar
  49. Schuh A (2003) Koronarpatienten im Wechselbad der Jahreszeiten. Wie sich Hitze und Kälte auf die Herzinfarktrate auswirken. [Coronary patients and changing seasons. How heat and coldness affect myocardial infarction.]. Münchner Medizinische Wochenschrift 145. Jahrgang 35–36:26–711–27/712Google Scholar
  50. Schwartz J (2000) The distributed lag between air pollution and daily deaths. Epidemiology 11:320–326CrossRefGoogle Scholar
  51. Sharma BK, Sagar S, Sood GK, Varma S, Kalra OP (1990) Seasonal variations of arterial blood pressure in normotensive and essential hypertensives. Indian Heart J 42:66–72Google Scholar
  52. Singer JD (1998) Using SAS PROC MIXED to fit multilevel models, hierarchical models and individual growth models. J Educ Behav Stat 24(4):323–355CrossRefGoogle Scholar
  53. Spencer FA, Goldberg RJ, Becker RC, Gore JM (1998) Seasonal distribution of acute myocardial infarction in the second National Registry of Myocardial Infarction. J Am Coll Cardiol 31:1226–1233CrossRefGoogle Scholar
  54. Stauzenberg SE, Gürtler H, Hannemann D, Tittel K (1990) Sportmedizin. [Sports Medicine.]. Barth, LeipzigGoogle Scholar
  55. Steadman RG (1979) The Assessment of Sultriness, Part 1: A Temperature-Humidity Index Based on Human Physiology and Clothing Science. Journal of Applied Meteorology 18:861–873CrossRefGoogle Scholar
  56. Tromp SW (1972) Influence of weather and climate on the fibrinogen content of human blood. Int J Biometeorol 16:93–95CrossRefGoogle Scholar
  57. Ungeheuer H, Brezowsky H (1965) Lufttemperatur und Luftfeuchtigkeit als Indikatoren biosphärischer Akkordschwankungen. [Air temperature and humidity as indicators for biospheric complex changes.]. Meteorologische Rundschau 16:H.4Google Scholar
  58. Vrbova L, Crighton EJ, Mamdani M, Moineddin R, Ubshur RE (2005) Temporal analysis of acute myocardial infarction in Ontario, Canada. Can J Cardiol 21:841–845Google Scholar
  59. Willich SN, Wegscheider K, Stallmann M, Keil T (2006) Noise burden and the risk of myocardial infarction. Eur Heart J 27:276–282CrossRefGoogle Scholar
  60. Woodhouse PR, Khaw KT, Plummer M, Foley A, Meade TW (1994) Seasonal variations of plasma fibrinogen and factor VII activity in the elderly: winter infections and death from cardiovascular disease. Lancet 343:435–439CrossRefGoogle Scholar
  61. Yarnell JW, Baker IA, Sweetnam PM, Bainton D, O’Brian JR, Whitehead PJ, Elwood PC (1991) Fibrinogen, viscosity, and white blood cell count are major risk factors for ischemic heart disease. Circulation 83:836–844CrossRefGoogle Scholar

Copyright information

© ISB 2008

Authors and Affiliations

  • Alexandra Schneider
    • 1
    • 2
  • Angela Schuh
    • 2
  • Friedrich-Karl Maetzel
    • 3
  • Regina Rückerl
    • 1
  • Susanne Breitner
    • 1
  • Annette Peters
    • 1
  1. 1.Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of EpidemiologyNeuherbergGermany
  2. 2.Institute of Health and Rehabilitation SciencesLudwig-Maximilians-University of MunichMunichGermany
  3. 3.Curschmann ClinicTimmendorfer StrandGermany

Personalised recommendations