Copenhagen – a significant source of birch (Betula) pollen?

  • Carsten Ambelas Skjøth
  • Janne Sommer
  • Jørgen Brandt
  • Martin Hvidberg
  • Camilla Geels
  • Kaj Mantzius Hansen
  • Ole Hertel
  • Lise M. Frohn
  • Jesper H. Christensen
Original Paper

Abstract

Current aerobiological research applies the hypothesis that the main source of atmospheric birch (Betula) pollen is forest trees. Our results indicate that the measured levels in Copenhagen are not only due to birch trees in Danish forests but that the urban areas also seem to be a significant source of birch pollen. A number of episodes in 2003 with enhanced pollen levels in Copenhagen seem to be associated with parks and gardens inside and just outside the city. Our results also indicate one long-range transport episode from remote sources in Poland and Germany. Finally, our results show that the pollen levels vary considerably over the day and geographically between Copenhagen and the city of Roskilde, 40 km away. We suggest, that these differences in time and space in the pollen levels are mapped using an integrated monitoring strategy.

Keywords

Back-trajectory analysis Modelling Denmark Local and regional sources 

Notes

Acknowledgements

This study was partly funded by the Copenhagen Global Change Initiative (COGCI) Research School (www.cogci.dk), and the National Board of Health Project: “Country-wide pollen forecasts”.

References

  1. Bernard C (2001) Airborne birch pollen in Neuchatel (Switzerland): onset, peak and daily patterns. Aerobiologia V17:25–29Google Scholar
  2. Borge R, Lumbreras J, Vardoulakis S, Kassomenos P, Rodriguez E (2007) Analysis of long-range transport influences on urban PM10 using two-stage atmospheric trajectory clusters. Atmos Environ 41:4434–4450CrossRefGoogle Scholar
  3. Brandt J, Christensen JH, Frohn LM, Berkowicz R (2001a) Operational air pollution forecasts from regional scale to urban street scale. Part 1: System description. Phys Chem Earth Part B Hydrol Oceans Atmos 26:781–786CrossRefGoogle Scholar
  4. Brandt J, Christensen JH, Frohn LM, Berkowicz R (2001b) Operational air pollution forecasts from regional scale to urban street scale. Part 2: Performance evaluation. Phys Chem Earth Part B Hydrol Oceans Atmos 26:825–830CrossRefGoogle Scholar
  5. Brandt J, Christensen JH, Frohn LM, Palmgren F, Berkowicz R, Zlatev Z (2001c) Operational air pollution forecasts from European to local scale. Atmos Environ 35:S91–S98CrossRefGoogle Scholar
  6. Budna E, Grzybowska L, Zytecka-Karolak M (2005) Forestry 2005. Statistical Publishing Establishment, Warsaw (In Polish: Lesnictiwo 2005)Google Scholar
  7. Bundesministerium für Ernährung (2004) L. u. V. Die zweite Bundeswaldinventur - BWI2 - Das wichtichste in Kürze. Bundesministerium für Ernährung, Landwirtsaft und Verbraucherschutz, Berlin, GermanyGoogle Scholar
  8. Corden J, Millington W, Bailey J, Brookes M, Caulton E, Emberlin J, Mullins J, Simpson C, Wood A (2000) UK regional variations in Betula pollen (1993–1997). Aerobiologia 16:227–232CrossRefGoogle Scholar
  9. Estrella N, Menzel A, Krämer U, Behrendt H (2006) Integration of flowering dates in phenology and pollen counts in aerobiology: analysis of their spatial and temporal coherence in Germany (1992–1999). Int J Biometeorol 51:49–59CrossRefGoogle Scholar
  10. European Commision (2005) Image2000 and CLC2000 Products and Methods. 1–152. European Commision, Joint Research Center (DG JRC), Institute for Environment and Sustainability, Land Management Unit, I-21020 Ispra (VA), ItalyGoogle Scholar
  11. Galan C (2007) Pollen production, potential sources in Aerotop Workshop, Phenology, Forecasting & Airborne Allergens, 18th-20th May 2007. In: Stach A (ed) Laboratory of Aeropalynology, Institute of Environmental Biology. Adam Mickiewicz University, Poznan, PolandGoogle Scholar
  12. Goldberg C, Buch H, Moseholm L, Weeke ER (1988) Airborne Pollen Records in Denmark, 1977–1986. Grana 27:209–217CrossRefGoogle Scholar
  13. Helbig N, Vogel B, Vogel H, Fiedler F (2004) Numerical modelling of pollen dispersion on the regional scale. Aerobiologia 20:3–19CrossRefGoogle Scholar
  14. Hertel O, Ellermann T, Berkowicz R, Løfstrøm P, Frohn LM, Geels C, Skjøth CA, Brandt J, Christensen J, Kemp K, Ketzel M (2007) Integrated air quality monitoring: environmental chemistry. Environ Chem 4:65–74CrossRefGoogle Scholar
  15. Hirst JM (1952) An automatic vlumetric spore trap. Ann Appl Biol 39:257–265CrossRefGoogle Scholar
  16. Hjelmroos M (1991) Evidence of Long-Distance Transport of Betula Pollen. Grana 30:215–228CrossRefGoogle Scholar
  17. Hjelmroos M (1992) Long-distance transport of Betula pollen grains and allergic symptons. Aerobiologia 8:231–236CrossRefGoogle Scholar
  18. Janjic ZI (1990) The step-mountain coordinate: Physical package. Monthly Weather Review 118:1429–1443CrossRefGoogle Scholar
  19. Janjic ZI (1994) The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review 122:927–945CrossRefGoogle Scholar
  20. Käpyla M, Penttinen A (1981) An evaluation of the microscopial counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana 20:131–141CrossRefGoogle Scholar
  21. Konijnendijk CC, Nilsson K, Randrup TB, Schipperin J (2005) Urban Forest and Trees. Springer pp 1–520Google Scholar
  22. Lantmäteriet (2004) Corine land cover,Sweden. http://dataservice.eea.europa.eu/dataservice/metadetails.asp?id=667
  23. Larsen PH, Johannsen VK (2002) Forest and Plantations 2000 (In Danish: Skove og Plantager 2000): Danmarks Statistik, Sejrøgade 11, 2100 København Ø, Danmark.1–171Google Scholar
  24. Molina RT, Rodriguez AM, Palacios IS, Lopez FG (1996) Pollen production in anemophilous trees. Grana 35:38–46CrossRefGoogle Scholar
  25. National Environmental Research Institute (2004) D. Corine land cover - Denmark. http://dataservice.eea.europa.eu/dataservice/metadetails.asp?id=667
  26. Nickovic S, Mikhailovic B, Rajkovic B, Papdoupulus A (1998) The Weather Forecasting System SKIRON II. University of Athens, Greece, pp 1–228Google Scholar
  27. Nielsen K, Stjernholm M, Müller-Wohlfeil DI, Madsen IL, Kjeldgaard A, Groom G, Hansen HS, Rolev AM, Hermansen B, Skov-Ptersen H, Johannsen VK, Hvidberg M, Jensen JE, Bacher V, Larsen H (2000) Area Information System - AIS Danmarks MIljøundersøgelser, Silkeborg, DenmarkGoogle Scholar
  28. Pasken R, Pietrowicz JA (2005) Using dispersion and mesoscale meteorological models to forecast pollen concentrations. Atmos Environ 39:7689–7701CrossRefGoogle Scholar
  29. Pauleit S, Duhme F (2000) Assessing the environmental performance of land cover types for urban planning. Landscape Urban Planning 52:1–20CrossRefGoogle Scholar
  30. Pauleit S, Jones N, Garcia-Martin G, Garcia-Valdecantos JL, Riviere LM, Vidal-Beaudet L, Bodson M, Randrup TB (2002) Tree establishment practice in towns and cities - Results from a European survey. Urban For Urban Greening 1:83–96CrossRefGoogle Scholar
  31. Petersen N, Munch E (1981) Anvendelsen af aerobiologiske data. In: Weeke E, Petersen NB (eds) Pollen og Skimmelsvampesporer. Symposium om pollen og skimmelsvampesporers betydning ved allergiske sygdomme. Scanticon, Århus, Denmark Google Scholar
  32. Ranta H, Kubin E, Siljamo P, Sofiev M, Linkosalo T, Oksanen A, Bondestam K (2006) Long distance pollen transport cause problems for determining the timing of birch pollen season in Fennoscandia by using phenological observations. Grana 45:297–304CrossRefGoogle Scholar
  33. Rasmussen A (2002) The effects of climate change on the birch pollen season in Denmark. Aerobiologia 18:253–265CrossRefGoogle Scholar
  34. Schueler S, Schlünzen K (2006) Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model. Environ Model Assess 11:179–194CrossRefGoogle Scholar
  35. Skjøth CA, Hertel O, Ellermann T (2002) Use of the ACDEP trajectory model in the Danish nation-wide Background Monitoring Programme. Phys Chem Earth 27:1469–1477CrossRefGoogle Scholar
  36. Skjøth CA, Sommer J, Stach A, Smith M, Brandt J (2007) The long range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clin Exp Allergy 37:1204–1212CrossRefGoogle Scholar
  37. Sofiev M, Siljamo P, Ranta H, Rantio-Lehtimaki A (2006) Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J Biometeorol 50:392–402CrossRefGoogle Scholar
  38. Sommer J, Rasmussen A (2006) Measurements of pollen and spores in Denmark 2006 (In Danish: Pollen- og sporemålinger i Danmark sæsonen 2006). 1–50Google Scholar
  39. Spieksma FTM, Emberlin JC, Hjelmroos M, Jager S, Leuschner RM (1995) Atmospheric Birch (Betula) Pollen in Europe - Trends and Fluctuations in Annual Quantities and the Starting Dates of the Seasons. Grana 34:51–57CrossRefGoogle Scholar
  40. Stach A, Smith M, Skjøth CA, Brandt J (2007) Examining Ambrosia pollen episodes at Poznañ (Poland) using back-trajectory analysis. Int J Biometeorol 51:275–286CrossRefGoogle Scholar
  41. Stohl A (1998) Computation, accuracy and applications of trajectories - A review and bibliography. Atmos Environ 32:947–966CrossRefGoogle Scholar
  42. Umweltbundesamt- DLR (2005) CORINE Land Cover 2000 Germany. Final report. http://dataservice.eea.europa.eu/dataservice/metadetails.asp?id=667, 1–80
  43. Weeke E (1981) Behandling af pollen- og skimmelssporeallergi. In: Weeke E, Petersen NB (eds) Pollen og Skimmelsvampesporer. Symposium om pollen og skimmelsvampesporers betydning ved allergiske sygdomme. Scanticon, Århus, DenmarkGoogle Scholar

Copyright information

© ISB 2007

Authors and Affiliations

  • Carsten Ambelas Skjøth
    • 1
  • Janne Sommer
    • 2
  • Jørgen Brandt
    • 1
  • Martin Hvidberg
    • 1
  • Camilla Geels
    • 1
  • Kaj Mantzius Hansen
    • 1
  • Ole Hertel
    • 1
  • Lise M. Frohn
    • 1
  • Jesper H. Christensen
    • 1
  1. 1.National Environmental Research InstituteUniversity of AarhusRoskildeDenmark
  2. 2.The Asthma and Allergy AssociationRoskildeDenmark

Personalised recommendations