International Journal of Biometeorology

, Volume 52, Issue 4, pp 251–259

Trends in phenology of Betula pubescens across the boreal zone in Finland

  • Eeva Pudas
  • Mirva Leppälä
  • Anne Tolvanen
  • Jarmo Poikolainen
  • Ari Venäläinen
  • Eero Kubin


Timing of plant phenophases is a useful biological indicator which shows how nature responds to the variation in climate. Thus, long phenological observation series help to estimate the impact of changing climate on forest plants. We investigated whether phenological patterns of downy birch Betula pubescens respond to warming climate and whether the intensity of the responses varies among phytogeographical zones. We studied data collected by the Finnish National Phenological Network from 30 observation sites across Finland during 1997–2006. The advancement in the timing of the earliest phenophase, bud burst, ranged from 0.7 days/year in southern boreal zone to 1.4 days/year in middle and northern boreal zones. Timing of bud burst was most clearly dependent on mean May temperatures. The intensity of the response to temperature increased from south to north. The advancement of bud burst resulted into a significant lengthening of the growth period by 1.2–1.6 days per year in northern and middle boreal zones, respectively, whereas the lengthening was not significant in the southern boreal zone. No trend was observed in the timing of autumn phenophases.


Betula pubescens Bud burst Effective temperature sum Climate change Boreal zone 


  1. Arctic Climate Impact Assessment (ACIA) (2005) Arctic Climate Impact Assessment. Scientific report. Cambridge University PressGoogle Scholar
  2. Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister R, Jónsdóttir IS, Laine K, Lévesque E, Marion GM, Molau U, Mølgaard P, Nordenhäll U, Raszhivin V, Robinson CH, Starr G, Stenström A, Stenström M, Totland Ø, Turner L, Walker L, Webber P, Welker JM, Wookey PA (1999) Response patterns of tundra plant species to experimental warming: a meta-analysis of the International Tundra Experiment. Ecol Monogr 69:491–511Google Scholar
  3. Ahti T, Hämet-Ahti L, Jalas J (1968) Vegetation zones and their sections in northwestern Europe. Ann Bot Fenn 5:169–211Google Scholar
  4. Badeck F-W, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004) Responses of spring phenology to climate change. New Phytol 162:295–309CrossRefGoogle Scholar
  5. Bonsal BR, Zhang X, Vincent LA, Hogg WD (2001) Characteristics of daily and extreme temperatures over Canada. J Climate 14:1959–1976CrossRefGoogle Scholar
  6. Braslavská O, Müller-Westermeier G, Št’astný P, Luknárová B, Tekušová M, Dittmann E, Bissolli P, Kreis A, Bruns E, Bohrendt J, Meier D, Polte-Rudolf C (2004) Evaluation of Phenological Data for Climatological Purposes. Final Report. Deutscher Wetterdienst Forschung und Entwicklung, Arbeitsergebnisse 81Google Scholar
  7. Chmielewski F-M, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric Forest Meteorol 108:101–112CrossRefGoogle Scholar
  8. Dose V, Menzel A (2004) Bayesian analysis of climate change impacts in phenology. Glob Chang Biol 10:259–272CrossRefGoogle Scholar
  9. Grisule G, Malina Z (2005) Analysis of long-term phenological time-series in the territory of Latvia. 17th International Congress of Biometeorology ICB 2005. Ann Meteorol 41(2):549Google Scholar
  10. Häkkinen R (1999) Analysis of bud-development theories based on long-term phenological and air temperature time series: application to Betula sp. leaves. Finnish Forest Research Institute, Research Papers 754Google Scholar
  11. Häkkinen R, Linkosalo T, Hari P (1998) Effects of dormancy and environmental factors on timing of bud burst in Betula pendula. Tree Physiol 18:707–712PubMedGoogle Scholar
  12. Hänninen H (1995) Effects of climatic change on trees from cool and temperate regions. - an ecophysiological approach on modeling of bud burst phenology. Can J Bot 73:183–199CrossRefGoogle Scholar
  13. Hänninen H (2006) Climate warming and the risk of frost damage to boreal forest trees: identification of critical ecophysiological traits. Tree Physiol 26:889–898PubMedGoogle Scholar
  14. IPCC (2001). Climate Change 2001: The scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  15. Jylhä K, Tuomenvirta H, Ruosteenoja K (2004) Climate change projections for Finland during the 21st century. Boreal Environ Res 9:127–152Google Scholar
  16. Koski V (1990) Joint effects of day length and temperature on dormancy processes. Silva Carelica 15:47–50Google Scholar
  17. Kramer K (1995) Phenotypic plasticity of the phenology of seven European tree species in relation to warming. Plant Cell Environ 18:93–104CrossRefGoogle Scholar
  18. Kubin E, Kotilainen E, Poikolainen J, Hokkanen T, Nevalainen S, Pouttu A, Karhu J, Pasanen J (2007) Monitoring instructions of the Finnish National Phenological Network. Finnish Forest Research InstituteGoogle Scholar
  19. Kubin E, Kotilainen E, Terhivuo J, Venäläinen A (2006) Phenological observations in Finland. Memo Soc Fauna Flora Fenn 82:33–44Google Scholar
  20. Marchand FL, Nijs I, Heuer M, Mertens S, Kockelbergh F, Pontailler J-Y, Impens I, Beyens L (2004) Climate Warming Postpones Senescence in High Arctic Tundra. Arct Antarct Alp Res 36(4):390–394CrossRefGoogle Scholar
  21. Maxwell B (1992) Arctic Climate: Potential for Change under Global Warming. In: Chapin FS III, Jeffries RL, Reynolds JF, Shaver GR, Svoboda J, Chu EW (eds) Arctic ecosystems in a changing climate. An ecophysiological perspective. Academic Press, San Diego, Calif., pp 11–34Google Scholar
  22. Meier U (ed) (1997) BBCH-Monograph. Growth stages of mono- and dicotyledonous plants. Blackwell, BerlinGoogle Scholar
  23. Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76–81PubMedCrossRefGoogle Scholar
  24. Menzel A (2002) Phenology: Its Importance to the Global Change Community. Clim Change 54(4):379–385CrossRefGoogle Scholar
  25. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, van Vliet AJH, Wielgolaski F-E, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976CrossRefGoogle Scholar
  26. Partanen J (2004) Regulation of growth onset and cessation in Norway spruce, Scots pine and Silver birch. Finnish Forest Research Institute, Research Papers 921Google Scholar
  27. Partanen J, Koski V, Hänninen H (1998) Effects of photoperiod and temperature on the timing of bud burst in Norway spruce. Tree Physiol 18:811–816PubMedGoogle Scholar
  28. Poikolainen J, Karhu J, Kubin E (1996) Development of a plant-phenological observation network in Finland. Finnish Forest Research Institute, Research Papers 623:97–101Google Scholar
  29. Pudas E, Tolvanen A, Poikolainen J, Sukuvaara T, Kubin E (2007) Timing of plant phenophases in Finnish Lapland in 1997–2006. Boreal Environ Res 12 (in press)Google Scholar
  30. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeGoogle Scholar
  31. Ruosteenoja K, Jylhä K, Tuomenvirta H (2005) Climate scenarios for FINADAPTstudies of climate change adaptation. FINADAPT Working Paper 15, Finnish EnvironmentInstitute Mimeographs 345, HelsinkiGoogle Scholar
  32. Sarvas R (1972) Investigations on the annual cycle of development of forest trees. Active period. Commun Inst For Fenn 76:1–110Google Scholar
  33. Sarvas R (1974) Investigations on the annual cycle of development of forest trees II. Autumn dormancy and winter dormancy. Commun Inst For Fenn 84.1:1–101Google Scholar
  34. Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G (2001) Tree and forest fundctioning in response to global warming. New Phytol 149:369–400CrossRefGoogle Scholar
  35. Scheifinger H, Menzel A, Koch E, Peter C (2003) Trends in spring time frost events and phenological dates in Central Europe. Theor Appl Climatol 74:41–51CrossRefGoogle Scholar
  36. Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Chang Biol 12:343–351CrossRefGoogle Scholar
  37. Shutova E, Wielgolaski FE, Karles SR, Makarova O, Berlina N, Filimonova T, Haraldsson E, Aspholm PE, Flø L, Høgda KA (2006) Growing seasons of Nordic mountain birch in northernmost Europe as indicated by long-term field studies and analyses of satellite images. Int J Biometeorol 51:155–166PubMedCrossRefGoogle Scholar
  38. Suzuki S, Kudo G (1997) Short-term effects of simulated environmental change on phenology, leaf traits, and shoot growth of alpine plants on a temperate mountain, northern Japan. Glob Chang Biol 3:108–115CrossRefGoogle Scholar
  39. Venäläinen A, Tuomenvirta H, Pirinen P, Drebs A (2005) A Basic Finnish climate data set 1961–2000 - description and illustrations. Reports 2005:5Google Scholar
  40. Walker MD, Ingersoll RC, Webber PJ (1995) Effects of interannual climate variation on phenology and growth of two alpine forbs. Ecology 76:1067–1083CrossRefGoogle Scholar
  41. Wielgolaski FE (2001a) Vegetation sections in northern Fennoscandian mountain birch forests. In: Wielgolaski FE (ed) Nordic Mountain Birch Ecosystems. Unesco: Man and the Biosphere Series 27:23–33Google Scholar
  42. Wielgolaski FE (2001b) Phenological modifications in plants by various edaphic factors. Int J Biometeorol 45:196–202PubMedCrossRefGoogle Scholar
  43. Wielgolaski FE, Karlsen SR (2007) Some views on plants in polar and alpine regions. Reviews in Environmental Science and Biotechnology DOI 10.1007/s11157-006-0014-z
  44. Zar JH (1984) Biostatistical analysis. Prentice Hall, Englewood Cliffs, N.JGoogle Scholar

Copyright information

© ISB 2007

Authors and Affiliations

  • Eeva Pudas
    • 1
  • Mirva Leppälä
    • 1
  • Anne Tolvanen
    • 1
  • Jarmo Poikolainen
    • 1
  • Ari Venäläinen
    • 2
  • Eero Kubin
    • 1
  1. 1.Finnish Forest Research Institute, Muhos Research UnitMuhosFinland
  2. 2.Finnish Meteorological Institute, Climate and Global ChangeHelsinkiFinland

Personalised recommendations