International Journal of Biometeorology

, Volume 52, Issue 2, pp 127–137 | Cite as

Assessing the impact of a downscaled climate change simulation on the fish fauna in an Inner-Alpine River

  • C. Matulla
  • S. Schmutz
  • A. Melcher
  • T. Gerersdorfer
  • P. Haas
Original Paper

Abstract

This study assesses the impact of a changing climate on fish fauna by comparing the past mean state of fish assemblage to a possible future mean state. It is based on (1) local scale observations along an Inner-Alpine river called Mur, (2) an IPCC emission scenario (IS92a), implemented by atmosphere-ocean global circulation model (AOGCM) ECHAM4/OPYC3, and (3) a model-chain that links climate research to hydrobiology. The Mur River is still in a near-natural condition and water temperature in summer is the most important aquatic ecological constraint for fish distribution. The methodological strategy is (1) to use downscaled air temperature and precipitation scenarios for the first half of the twenty-first century, (2) to establish a model that simulates water temperature by means of air temperature and flow rate in order to generate water temperature scenarios, and (3) to evaluate the impact on fish communities using an ecological model that is driven by water temperature. This methodology links the response of fish fauna to an IPCC emission scenario and is to our knowledge an unprecedented approach. The downscaled IS92a scenarios show increased mean air temperatures during the whole year and increased precipitation totals during summer, but reduced totals for the rest of the annual cycle. These changes result in scenarios of increased water temperatures, an altered annual cycle of flow rate, and, in turn, a 70 m displacement in elevation of fish communities towards the river’s head. This would enhance stress on species that rely on low water temperatures and coerce cyprinid species into advancing against retreating salmonids. Hyporhithral river sectors would turn into epipotamal sectors. Grayling (Thymallus thymallus) and Danube salmon (Hucho hucho), presently characteristic for the Mur River, would be superceded by other species. Native brown trout (Salmo trutta), already now under pressure of competition, may be at risk of losing its habitat in favour of invaders like the exotic rainbow trout (Oncorhynchus mykiss), which are better adapted to higher water temperatures. Projected changes in fish communities suggest an adverse influence on salmonid sport fishing and a loss in its high economic value.

Keywords

Climate change Fish fauna Scenarios River European Alps 

Notes

Acknowledgements

We would like to extend our appreciation to the Austrian Federal-Ministry of education, which funded parts of this study, and to the Natural Science and Engineering Council of Canada (NSERC), who awarded a postgraduate fellowship to C.M. during which final calculations and the preparation of this paper were carried out. The Central Institute for Meteorology and Geodynamics provided the ALOCLIM dataset and the Austrian hydrographical service (HZB) water temperature and flow rate measurements. Special thanks go to H. Kuhn who enabled such smooth data processing. We are further grateful to E. Watson, S. Wagner and H. Matulla for their critical comments on the manuscript, to B. Gardeike for skillfully preparing the figures, and to C. Fuhringer who assisted us with the editing. Finally, we are grateful for the comments of two reviewers, which helped to improve the paper.

References

  1. Auer I, Böhm R, Schöner W (2001) Austrian long-term climate 1767–2000-Multiple instrumental climate time series from Central Europe. Central Institute for Meteorology and Geodynamics, Hohe Warte 38, Vienna, AustriaGoogle Scholar
  2. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Mueller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP-historical instrumental climatological surface time series of the greater Alpine region 1760–2003. Int J Climatol 17:14–46Google Scholar
  3. Eaton JG, Scheller RM (1996) Effects of climate warming on fish thermal habitat in streams of the United States. Limnol Oceanogr 41:1109–1115CrossRefGoogle Scholar
  4. Elliott JM (1994) Quantitative ecology and the brown trout. Oxford University Press, OxfordGoogle Scholar
  5. Elliott JM (2000) Pools as refugia for brown trout during two summer droughts: trout responses to thermal and oxygen stress. J Fish Biol 56:938–948CrossRefGoogle Scholar
  6. Flebbe PA, Roghair LD, Bruggink JL (2006) Spatial modeling to project southern Appalachian trout distribution in a warmer climate. Trans Am Fish Soc 135:1371–1382CrossRefGoogle Scholar
  7. Fritsch AJ (1872) Die Wirbeltiere Böhmens. Ein Verzeichnis aller bisher in Böhmen beobachteten Säugetiere, Vögel, Amphibien und Fische. Arch Naturwissensch Landesdurchforsch Böhmen 2:1–152Google Scholar
  8. Haas P (2005) Temperatur Extrapolation entlang von Mur und Ybbs. COSREM 21, Internal report, Institute of Meteorology, Vienna, Austria. http://www.boku.ac.at/imp/klima/Literatur/cosrem21.pdf
  9. Hari RE, Livingstone DM, Siber R, Burckhard-Holm P, Güttinger H (2006) Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams. Global Chang Biol 12:10–26CrossRefGoogle Scholar
  10. Huet M (1949) Apercu des relations entre la pente et les populations piscicoles des eaux courantes. Schweiz Z Hydrol 11:332–351CrossRefGoogle Scholar
  11. Huitson A (1966) The analysis of variance. Griffin’s statistical monographs and courses, number 18. Griffin, LondonGoogle Scholar
  12. Illies J, Botosaneanu L (1963) Problèmes et méthodes de la classification et de la yonation écologique des eaux courantes considerées surtout du point de vue faunistique. Internationale Vereinigung für theoretische und angewandte Limnologie 12:1–57Google Scholar
  13. IPCC (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University PressGoogle Scholar
  14. Isaak DJ, Hubert WA (2004) Nonlinear response of trout abundance to summer stream temperatures across a thermally diverse montane landscape. Trans Am Fish Soc 133:1254–1259CrossRefGoogle Scholar
  15. Jackson D, Mandrak N (2002) Changing fish biodiversity: predicting the loss of cyprinid biodiversity due to global climate change. In: McGinn N (ed) Fisheries in a changing climate. American Fisheries Society Symposium 32. American Fisheries Society, Bethesda, MD, pp 89–98Google Scholar
  16. Keleher CJ, Rahel FJ (1996) Thermal limits to salmonid distributions in the rocky mountain region and potential habitat loss due to global warming: a geographic information system (GIS) approach. Trans Am Fish Soc 125:1–13CrossRefGoogle Scholar
  17. Le Cren ED (1955) Year to year variation in the year-class strength of Perca fluviatilis. Verh Int Verein Limnol 12:187–192Google Scholar
  18. Matulla C (2005) Regional, seasonal and predictor-optimized downscaling to provide groups of local scale scenarios in the complex structured terrain of Austria. Meteorol Z 14:33–47CrossRefGoogle Scholar
  19. Moog O, Wimmer W (1994) Comments to the water temperature based assessment of biocoenozic regions according to Illies and Botosaneanu. Verh Int Verein Limnol 25:1667–1673Google Scholar
  20. Morrison J, Quick M, Foreman M (2002) Climate change in the Fraser River watershed: flow and temperature projections. J Hydrol 263:230–244CrossRefGoogle Scholar
  21. Muhar S, Kainz M, Schwarz M (1998) Ausweisung flußtypspezifisch erhaltener Fließgewässerabschnitte in Österreich. Bundesministerium für Land- und Forstwirtschaft, Vienna, AustriaGoogle Scholar
  22. O’Brien CM, Fox CJ, Planque B, Casey J (2000) Climate variability and North Sea cod. Nature 404:142PubMedCrossRefGoogle Scholar
  23. Pont D, Hugueny B, Beier U, Goffaux D, Melcher A, Noble R, Rogers C, Roset N, Schmutz S (2006) Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages. J Appl Ecol 43:70–80CrossRefGoogle Scholar
  24. Rahel F (2002) Using current biogeographic limits to predict fish distributions following climate change. In: McGinn N (ed) Fisheries in a changing climate. American Fisheries Society Symposium 32. American Fisheries Society, Bethesda, MD, pp 99–110Google Scholar
  25. Rahel FJ, Nibbelink NP (1999) Spatial patterns in relations among brown trout (Salmo trutta) distribution, summer air temperature, and stream size in Rocky Mountain streams. Can J Fish Aquat Sci 56:43–51CrossRefGoogle Scholar
  26. Rahel FJ, Keleher CJ, Anderson JL (1996) Potential habitat loss and population fragmentation for cold water fish in the North Platte River drainage of the Rocky Mountains: response to climate warming. Limnol Oceanogr 41:1116–1123CrossRefGoogle Scholar
  27. Reid PC, Borges MD, Svendsen E (2001) A regime shift in the North Sea circa 1988 linked to changes in the North Sea horse mackerel fishery. Fish Res 50:163–171CrossRefGoogle Scholar
  28. Roeckner E, Oberhuber J, Bacher A, Christoph M, Kirchner J (1996) ENSO variability and atmospheric response in a global coupled atmosphere-ocean GCM. Climate Dyn 12:737–745CrossRefGoogle Scholar
  29. Schmutz S (1995) Zonierung und Bestandsprognose von Bachforelle, (Salmo trutta f. fario, L.), Regenbogenforelle, (Oncorhynchus mykiss, WAL.) und Aesche, (Thymallus thymallus, L.) anhand von Makrohabitatparametern in oesterreichischen Rhithralgewaessern. Dissertation HFA-BOKU, University of Agricultural Sciences, ViennaGoogle Scholar
  30. Schmutz S, Kaufmann M, Vogel B, Jungwirth M (2000) Grundlagen zur Bewertung der fischökologischen Funktionsfähigkeit von Fliessgewässern. Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wasserwirtschaftskataster. http://publikationen.lebensministerium.at/
  31. Schmutz S, Zauner G, Eberstaller J (2001) Die “Streifenbefischungsmethode”: Eine Methode zur Quantifizierung von Fischbeständen mittelgroßer Fließgewässer. Österr Fischerei 54:14–27Google Scholar
  32. Schmutz S, Matulla C, Melcher A, Gerersdorfer T, Haas P, Formayer H (2004) Beurteilung der Auswirkungen möglicher Klimaänderungen auf die Fischfauna anhand ausgewählter Fließgewässer. Final report by government department BMLFUW, GZ 54 3895/163-V/4/03. http://www.boku.ac.at/imp/klima/Literatur/FishClim_Endbericht.pdf
  33. Shuter BJ, Post JR (1990) Climate, population variability, and the zoogeography of temperate fishes. Trans Am Fish Soc 119:314–336CrossRefGoogle Scholar
  34. Singh VP (1995) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, COGoogle Scholar
  35. Thienemann A (1925) Die Binnengewässer Mitteleuropas. Eine limnologische Einführung. Schweitzerbart’sche, StuttgartGoogle Scholar
  36. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continum concept. Can J Fish Aquat Sci 37:130–137CrossRefGoogle Scholar
  37. Welcomme RL (1985) River fisheries. FAO Fisheries Technical Paper (262). FAO–UNO, Rome, http://www.fao.org/documents/show_cdr.asp?url_file=/DOCREP/003/T0537E/T0537E00.HTM

Copyright information

© ISB 2007

Authors and Affiliations

  • C. Matulla
    • 1
    • 2
  • S. Schmutz
    • 3
  • A. Melcher
    • 3
  • T. Gerersdorfer
    • 4
  • P. Haas
    • 4
  1. 1.Climate Research DivisionScience and Technology Branch, Environment CanadaTorontoCanada
  2. 2.Institute of Coastal ResearchGKSS Research CentreGeesthachtGermany
  3. 3.Institute of Hydrobiology and Aquatic Ecosystem ManagementUniversity of Natural Resources and Applied Life SciencesViennaAustria
  4. 4.Institute of MeteorologyUniversity of Natural Resources and Applied Life SciencesViennaAustria

Personalised recommendations