International Journal of Biometeorology

, Volume 52, Issue 2, pp 139–147 | Cite as

Effects of recent climate trends on the distribution of potential natural vegetation in Central Germany

  • Johannes Franke
  • Barbara Köstner


Introducing climate quotients for the growing season (Qgs) provides a way to quantify effects of climate trends with respect to Potential Natural Vegetation (PNV), especially beech forests (Fagus sylvatica L.) in Central Germany. What is crucial in this regard is the great influence of the dominant decrease in the amount of precipitation (up to 40% in the last 50 years) during the growing season versus the dormant season. However, precipitation during the dormant season (which is predominantly increasing: up to 40% in the last 50 years) is also important for replenishing the soil water supply. The Qgs values of the Climatic Normal period of 1971–2000 are generally higher (up to 12% in lowland areas) compared with the Climatic Normal period of 1961–1990, the extent of the difference being in general inversely proportional to elevation above sea level. What this means for the area under investigation is that humidity conditions, which generally improve as the elevation above sea level increases, have a positive effect on the site potential. However, a comparison of the climatologically important period of 1991–2003 with the period of 1961–1990 (area-wide increase between 12% and 16%) could not identify this positive effect of elevation on precipitation for the area under investigation. With regard to the recent climate-based trends of PNV, we have shown that all natural spatial units in Central Germany are affected by progressing continentality (i.e., dryness) during the growing season and the resulting deterioration of the site potential. The area of potential beech forest at lower elevation has decreased in favour of oak forest as PNV, while less change is observed in the montane area.


Beech forest Ellenberg’s climate quotient Growing season Potential natural vegetation Regional climate change 



The authors wish to thank the German Weather Service and Dr. L. Coufal of the Czech Hydrometeorological Institute in Prague for the provision of data. Particular thank true for Prof. Ch. Bernhofer (chief of the Department of Meteorology, Technische Universität Dresden, Germany) for assistance and support.


  1. AK Standortskartierung in der Arbeitsgemeinschaft Forsteinrichtung (1996) Forstliche Standortsaufnahme. MünsterGoogle Scholar
  2. Bakkenes M, Alkemade JRM, Ihle F, Leemans R, Latour JB (2002) Assessing effects of forecast climate change on the diversity and distribution of European higher plants for 2050. Glob Chang Biol 8:390–407CrossRefGoogle Scholar
  3. Bernhofer Ch, Goldberg V, Franke J (2003) REKLI - Aufbau einer Klimadatenbank und Regionale Klimadiagnose für Thüringen. Final Report of the Thuringia State Office for Environment and Geology, JenaGoogle Scholar
  4. Blümel K, Klämt A, Malitz G, Matthäus H, Rachner M, Richter D (2001) Hydrometeorologische Untersuchungen zum Problem der Klimaveränderungen. Reports of the German Weather Service, No 219, OffenbachGoogle Scholar
  5. Ellenberg H (1963) Vegetation Mitteleuropas mit den Alpen. Eugen Ulmer, StuttgartGoogle Scholar
  6. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Eugen Ulmer, StuttgartGoogle Scholar
  7. Enke W, Deutschländer T, Schneider F, Küchler W (2005) Results of five regional climate studies applying a weather pattern based downscaling method to ECHAM4 climate simulations. Meteorol Z 12:274–257Google Scholar
  8. Flemming G (2001) Angewandte Klimatologie von Sachsen - Basis und Zustandsklima von Sachsen. Tharandter Klimaprotokolle, No 4, Technische Universität DresdenGoogle Scholar
  9. Franke J, Goldberg V, Bernhofer Ch (2004a) Regionale Klimatrends für Mitteldeutschland. Article on Conference of Meteorology (September 2004), KarlsruheGoogle Scholar
  10. Franke J, Goldberg V, Eichelmann U, Freydank E, Bernhofer Ch (2004b) Statistical analysis of regional climate trends in Saxony, Germany. Clim Res 27:145–150CrossRefGoogle Scholar
  11. Gates DM (1993) Climate change and its biological consequences. Sinauer, Sunderland, Mass.Google Scholar
  12. Herzog J, Müller-Westermeier G (1998) Homogenitätsprüfung und Homogenisierung klimatologischer Messreihen im Deutschen Wetterdienst. Reports of the German Weather Service, No 202, OffenbachGoogle Scholar
  13. Hofmann W (1968) Vitalität der Rotbuche und Klima in Mainfranken. Feddes Repert 78:135–137Google Scholar
  14. Jensen LU, Lawesson JE, Balslev H, Forchhammer MC (2004) Predicting the distribution of Carpinus betulus in Denmark with Ellenberg’s Climate Quotient. Nord J Bot 23:57–67Google Scholar
  15. John J (2001) Mitteldeutschland, Begriff-Geschichte-Konstrukt. Hain, JenaGoogle Scholar
  16. Kendall MG (1970) Rank correlations methods. Griffin, LondonGoogle Scholar
  17. Köstner B, Schmidt M, Falge E, Fleck S, Tenhunen JD (2004) Atmospheric and structural controls on carbon and water relations in mixed-forest stands of beech and oak. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment. A German Case Study. Ecological studies 172. Springer, Berlin Heidelberg New York, pp 69–98Google Scholar
  18. Lautensach H (1952) Der Geographische Formenwandel. StuttgartGoogle Scholar
  19. Mann HB (1945) Nonparametric test against trends. Econometrica 13:245–259CrossRefGoogle Scholar
  20. Neef E (1967) Die theoretischen Grundlagen der Landschaftslehre. Haack, GothaGoogle Scholar
  21. Owen SJ (1992) An implementation of natural neighbour interpolation in three dimensions. MS thesis, Brigham Young University, Provo (UT)Google Scholar
  22. Rapp J (2000) Konzeption, Problematik und Ergebnisse klimatologischer Trendanalysen für Europa und Deutschland. Reports of the German Weather Service, No 212, OffenbachGoogle Scholar
  23. Rapp J, Schönwiese C-D (1995) Atlas der Niederschlags- und Temperaturtrends in Deutschland 1891-1990. FrankfurterGeowiss Arb, Serie B, Band 5Google Scholar
  24. Richter D (1995) Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Messfehlers des Hellmann-Niederschlagsmessers. Reports of the German Weather Service, No 194, OffenbachGoogle Scholar
  25. Schmidt PA, Hempel W, Denner M, Döring N, Gnüchtel A, Walter B, Wendel D (2002) Potentielle Natürliche Vegetation Sachsens mit Karte 1:200000. Saxony State Office for Environment and Geology, DresdenGoogle Scholar
  26. Schlüter H (1968) Zur systematischen und räumlichen Gliederung des Carpinion in Mittelthüringen. Feddes Repert 77:117–141Google Scholar
  27. Sukopp H, Wurzel A (2000) Changing climate and the effect on vegetation in Central European cities. Arboric J 24:257–281Google Scholar
  28. Thuiller W (2003) BIOMOD - optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Chang Biol 9:1353–1362CrossRefGoogle Scholar
  29. Werner PC, Gerstengarbe FW, Oesterle H (2001) Klimatypänderungen in Deutschland im 20. Jahrhundert. Climate status report 2001, German Weather Service, OffenbachGoogle Scholar
  30. Wolff B, Erhard M, Holzhausen M, Kuhlow T (2003) Das Klima in den Forstlichen Wuchsgebieten Deutschlands. Information of the Federal Research Institute of Forest- and Timber Industry, HamburgGoogle Scholar
  31. Woodward FI (1986) Climate and plant distribution. Cambridge Studies in Ecology. Cambridge University PressGoogle Scholar
  32. Woodward FI, Lomas MR, Lee SE (2001) Predicting the future productivity and distribution of global terrestrial vegetation. In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic Press, San Diego, pp 521–541Google Scholar

Copyright information

© ISB 2007

Authors and Affiliations

  1. 1.Department of MeteorologyTechnische Universität DresdenTharandtGermany

Personalised recommendations