International Journal of Biometeorology

, Volume 51, Issue 1, pp 49–59 | Cite as

Integration of flowering dates in phenology and pollen counts in aerobiology: analysis of their spatial and temporal coherence in Germany (1992–1999)

  • Nicole EstrellaEmail author
  • Annette Menzel
  • Ursula Krämer
  • Heidrun Behrendt
Original Article


We studied the possibility of integrating flowering dates in phenology and pollen counts in aerobiology in Germany. Data were analyzed for three pollen types (Betula, Poaceae, Artemisia) at 51 stations with pollen traps, and corresponding phenological flowering dates for 400 adjacent stations (< 25 km) for the years 1992–1993 and 1997–1999. The spatial and temporal coherence of these data sets was investigated by comparing start and peak of the pollen season with local minima and means of plant flowering. Our study revealed that start of birch pollen season occurred on average 5.7 days earlier than local birch flowering. For mugwort and grass, the pollen season started on average after local flowering was observed; mugwort pollen was found 4.8 days later and grass pollen season started almost on the same day (0.6 days later) as local flowering. Whereas the peak of the birch pollen season coincided with the mean flowering dates (0.4 days later), the pollen peaks of the other two species took place much later. On average, the peak of mugwort pollen occurred 15.4 days later than mean local flowering, the peak of grass pollen catches followed 22.6 days after local flowering. The study revealed a great temporal divergence between pollen and flowering dates with an irregular spatial pattern across Germany. Not all pollen catches could be explained by local vegetation flowering. Possible reasons include long-distance transport, pollen contributions of other than phenologically observed species and methodological constraints. The results suggest that further research is needed before using flowering dates in phenology to extrapolate pollen counts.


Flowering Long-range transport Phenology Pollen Spatial variability 



The authors thank the German Meteorological Service for providing phenological and climate data and the Pollen Informationsdienst for providing German pollen data.


  1. Aberg N, Sundell J, Eriksson B, Hesselmar B, Aberg B (1996) Prevalence of allergic diseases in schoolchildren in relation to family history, upper respiratory infections, and residential characteristics. Allergy 51:232–237PubMedGoogle Scholar
  2. Beggs PJ (2004) Impacts of climate change on aeroallergens: past and future. Clin Exp Allergy 34:1507–1513PubMedCrossRefGoogle Scholar
  3. Beggs PJ, Bambrick HJ (2005) Is the global rise of asthma an early impact of anthropogenic climate change? Environ Health Persp 113:915–919CrossRefGoogle Scholar
  4. Bourgeois JC, Gajewski K, Koerner RM (2001) Spatial patterns of pollen deposition in arctic snow. J Geophys Res-Atmos 106:5255–5265CrossRefGoogle Scholar
  5. Cabezudo B, Recio M, SanchezLaulhe JM, Trigo MD, Toro FJ, Polvorinos F (1997) Atmospheric transportation of marihuana pollen from North Africa to the southwest of Europe. Atmos Environ 31:3323–3328CrossRefGoogle Scholar
  6. Cambon G, Ritchie JC, Guinet P (1992) Long-distance transport of airborne pollen in Southern Ontario (Canada). Can J Bot 70:2284–2293CrossRefGoogle Scholar
  7. Campbell ID, McDonald K, Flannigan MD, Kringayark J (1999) Long-distance transport of pollen into the Arctic. Nature 399:29–30CrossRefGoogle Scholar
  8. Chuine I, Belmonte J (2004) Improving prophylaxis for pollen allergies: Predicting the time course of the pollen load of the atmosphere of major allergenic plants in France and Spain. Grana 43:65–80CrossRefGoogle Scholar
  9. Deutscher Wetterdienst (1991) Anleitung für die phänologischen Beobachter des deutschen Wetterdienstes (BAPH). Vorschriften und Betriebsunterlagen. Deutscher Wetterdienst 17 (VuB17)Google Scholar
  10. Emberlin J, Detandt M, Gehrig R, Jaeger S, Nolard N, Rantio-Lehtimaki A (2002) Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. Int J Biometeorol 46:159–170PubMedCrossRefGoogle Scholar
  11. Frei T (1998) The effects of climate change in Switzerland 1969–1996 on airborne pollen quantities from hazel, birch and grass. Grana 37:172–179CrossRefGoogle Scholar
  12. Haahtela T, Lindholm H, Bjorksten F, Koskenvuo K Laitinen LA (1990) Prevalence of asthma in Finnish young men. Brit Med J 301:266–268PubMedCrossRefGoogle Scholar
  13. Huynen M, Menne B, Behrendt H, Bertollini R, Bonin S, Brandao R, Brown-Fahrländer C, Clot B, D’Ambrosio C, De Nuntiis P, Ebi KL, Emberlin J, Erdei Orbanne E, Galan C, Jäger S, Kovats S, Mandrioli P, Martens P, Menzel A, Nyenzi B, Rantio-Lehtimäki A, Ring J, Rybnicek O, Traidl-Hoffmann C, Van Vliet A, Voigt T, Weiland S, Wickman M (2003) Phenology and Human Health: Allergic disorders. Report of a WHO meeting. Rome, Italy, 16–17 January 2003Google Scholar
  14. Krämer U, Link E, Behrendt H (2001) Geografische und Zeitliche Trends der Birken-, Gras- und Beifuβpollenbelastung in Deutschland. Pneumologie 55:229–230PubMedCrossRefGoogle Scholar
  15. Jager S, Nilsson S, Berggren B, Pessi AM, Helander M, Ramfjord H (1996) Trends of some airborne tree pollen in the Nordic countries and Austria, 1980–1993 - A comparison between Stockholm, Trondheim, Turku and Vienna. Grana 35:171–178Google Scholar
  16. Jarosz N, Loubet B, Huber L (2004) Modelling airborne concentration and deposition rate of maize pollen. Atmos Environ 38:5555–5566CrossRefGoogle Scholar
  17. Kasprzyk I (2003) Flowering phenology and airborne pollen grains of chosen tree taxa in Rzeszów (SE Poland). Aerobiologia 19:113–120CrossRefGoogle Scholar
  18. Menzel A, Estrella N (2001) Plant phenological changes. In: Walther GR, Burga CA, Edwards PJ (Eds.) “Fingerprints” of Climate Change - Adapted behaviour and shifting species ranges. Kluwer/Plenum, New York, pp 123–137Google Scholar
  19. Nowak D, Heinrich J, Jorres R, Wassmer G, Berger J, Beck E, Boczor S, Claussen M, Wichmann HE, Magnussen H (1996) Prevalence of respiratory symptoms, bronchial hyperresponsiveness and atopy among adults: West and East Germany. Eur Resp J 9:2541–2552CrossRefGoogle Scholar
  20. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42PubMedCrossRefGoogle Scholar
  21. Rapiejko P (1995) Pollen Monitoring in Poland. In: Spiewak R (ed) Pollen and pollinosis: current problems. Institute of Agricultural Medicine, Lublin, pp 18–20Google Scholar
  22. Rasmussen A (2002) The effects of climate change on the birch pollen season in Denmark. Aerobiologia 18:253–265CrossRefGoogle Scholar
  23. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60PubMedCrossRefGoogle Scholar
  24. Rousseau DD, Duzer D, Cambon GV, Jolly D, Poulsen U, Ferrier J, Schevin P, Gros R (2003) Long distance transport of pollen to Greenland. Geophys Res Lett 30Google Scholar
  25. Rousseau DD, Duzer D, Etienne JL, Cambon G, Jolly D, Ferrier J, Schevin P (2004) Pollen record of rapidly changing air trajectories to the North Pole. J Geophys Res-Atmos 109Google Scholar
  26. Smith M, Emberlin J, Kress A (2005) Examining high magnitude grass pollen episodes at Worcester, United Kingdom, using back-trajectory analysis. Aerobiologia 21:85–94CrossRefGoogle Scholar
  27. Spieksma FTM, Emberlin JC, Hjelmroos M, Jager S, Leuschner RM (1995) Atmospheric birch (Betula) pollen in Europe - Trends and Fluctuations in Annual Quantities and the Starting Dates of the Seasons. Grana 34:51–57Google Scholar
  28. Spieksma FTM, Corden JM, Detandt M, Millington WM, Nikkels H, Nolard N, Schoenmakers CHH, Wachter R, de Weger LA, Willems R, Emberlin J (2003) Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in western Europe. Aerobiologia 19:171–184CrossRefGoogle Scholar
  29. Traidl-Hoffmann C, Kasche A, Menzel A, Jakob T, Thiel M, Ring J, Behrendt H (2003) Impact of pollen on human health: More than allergen carriers? Int Arch Allergy Imm 131:1–13CrossRefGoogle Scholar
  30. Van de Water PK, Keever T, Main CE, Levetin E (2003) An assessment of predictive forecasting of Juniperus ashei pollen movement in the Southern Great Plains, USA. Int J Biometeorol 48:74–82PubMedCrossRefGoogle Scholar
  31. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395PubMedCrossRefGoogle Scholar

Copyright information

© ISB 2006

Authors and Affiliations

  • Nicole Estrella
    • 1
    Email author
  • Annette Menzel
    • 1
  • Ursula Krämer
    • 2
  • Heidrun Behrendt
    • 3
  1. 1.Department of Ecology, Chair of EcoclimatologyTechnical University MunichFreisingGermany
  2. 2.Institut für Umweltmedizinische Forschung (IUF)University of DüsseldorfDüsseldorfGermany
  3. 3.ZAUM Center for Allergy & Environment, Division Environmental Dermatology & Allergy GSF/TUMTechnical University MunichMünchenGermany

Personalised recommendations