International Journal of Biometeorology

, Volume 50, Issue 6, pp 342–348

Impact of extreme temperatures on daily mortality in Madrid (Spain) among the 45–64 age-group

Original Article


This paper analyses the relationship between extreme temperatures and mortality among persons aged 45–64 years. Daily mortality in Madrid was analysed by sex and cause, from January 1986 to December 1997. Quantitative analyses were performed using generalised additive models, with other covariables, such as influenza, air pollution and seasonality, included as controls. Our results showed that impact on mortality was limited for temperatures ranging from the 5th to the 95th percentiles, and increased sharply thereafter. During the summer period, the effect of heat was detected solely among males in the target age group, with an attributable risk (AR) of 13.3% for circulatory causes. Similarly, NO2 concentrations registered the main statistically significant associations in females, with an AR of 15% when circulatory causes were considered. During winter, the impact of cold was exclusively observed among females having an AR of 7.7%. The magnitude of the AR indicates that the impact of extreme temperature is by no means negligible.


Heat wave Mortality 45–64 age-group Temperature Cold wave 


  1. Alberdi JC, Díaz J (1997) Modelización de la mortalidad diaria en la Comunidad de Madrid de 1986 a 1991. Gac Sanit 11:9–15PubMedGoogle Scholar
  2. Alberdi JC, Díaz J, Montero JC, Mirón IJ (1998a) Daily mortality in Madrid community 1986–1992. Relationship with meteorological variables. Eur J Epidemiol 14:571–578CrossRefPubMedGoogle Scholar
  3. Alberdi JC, Díaz J, Montero JC, Mirón IJ, Pajares MS (1998b) Air pollution and mortality in Madrid (Spain): a time series analysis. Int Arch Occup Environ Health 71:543–549CrossRefPubMedGoogle Scholar
  4. Akaike H (1974) A new look at statistical model identification. IEEE Trans Autom Control 19:716–722CrossRefGoogle Scholar
  5. Avendano LF, Céspedes A, Stecher X, Palomino MA (1999) Influence of respiratory viruses, cold weather and air pollution in the lower respiratory tract infections in infants children. Rev Med Chile 127:1073–1078PubMedGoogle Scholar
  6. Basu R, Samet JM (2002) Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiol Rev 24:190–202CrossRefPubMedGoogle Scholar
  7. Box GEP, Jenkins GM, Reinsel C (1994) Time series analysis, forecasting and control. Prentice Hall, Englewood Cliffs, NJ Google Scholar
  8. Braga AL, Zanobetti A, Schwartz J (2001) The time course of weather-related deaths. Epidemiology 12:662–667CrossRefPubMedGoogle Scholar
  9. Centre for Disease Control and Prevention (2002) Heat related death—four states, July–August 2001 and United States, 1979–1999. MMWR Morb Mort Wkly Rep 51:528–531Google Scholar
  10. Coste J, Spira A (1991) Le proportion de cas atributable en Santé Publique: definition(s), estimation(s) et interprétation (in French) [Proportion of cases attributable to public health: definition(s), estimation(s) and interpretation]. Rev Epidemiol Santé Publique 51:399–411Google Scholar
  11. Curriero FC, Heiner KS, Samet JM, Zeger SL, Strag L, Patz JA (2002) Temperature mortality in 11 cities of the Eastern of the United States. Am J Epidemiol 155:80–87CrossRefPubMedGoogle Scholar
  12. Díaz J, García R, Ribera P et al (1999) Modeling air pollution and its relationship with mortality and morbidty in Madrid, Spain. Int Arch Occup Environ Health 72:366–376CrossRefPubMedGoogle Scholar
  13. Díaz J, Jordán A, García R, López C, Alberdi JC, Hernández E, Otero A (2002a) Heat waves in Madrid 1986–1997: effects on the health of the elderly. Int Arch Occup Environ Health 75:163–170CrossRefPubMedGoogle Scholar
  14. Díaz J, García R, Velázquez de Castro F, Hernández E, Otero A (2002b) Effects of extremely hot days on people older than 65 years old in Seville (Spain) from 1986–1997. Int J Biometeorol 46:145–151CrossRefPubMedGoogle Scholar
  15. Díaz J, Linares C, García-Herrera R, López C, Trigo R (2004) Impact of temperature and air pollution on the mortality of children in Madrid. J Occup Environ Med 46:768–774PubMedCrossRefGoogle Scholar
  16. Díaz J, García-Herrera R, López C, Linares C, Tobías A, Prieto L (2005) Mortality impact of extreme winter temperatures. Int J Biometeorol 49:179–183CrossRefPubMedGoogle Scholar
  17. Díaz J, García-Herrera R, Trigo RM, Linares C, Valente MA, De Migule JM, Hernández E (2006) The impact of the summer 2003 heat wave in Iberia: how should we measure it? Int J Biometerorol 50:159–166CrossRefGoogle Scholar
  18. Driscoll DM (1971) The relationship between weather and mortality in ten major metropolitan areas in the United States, 1962–1965. Int J Biometeorol 15:23–29CrossRefPubMedGoogle Scholar
  19. Dominici F, McDermot A, Zeger SL, Samet JM (2002) On the use of generalised additive models in time-series of air pollution and health. Am J Epidemiol 15:193–203CrossRefGoogle Scholar
  20. Eurowinter Group, Donaldson GC, Keatinge WR (1997) Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. Lancet 349:1341–1346CrossRefPubMedGoogle Scholar
  21. García-Herrera R, Díaz J, Trigo RM, Hernández E (2005) Extreme summer temperatures in Iberia: health impacts and associated synoptic conditions. Ann Geophys 23:239–251Google Scholar
  22. González S, Díaz J, Pajares MS, Alberdi JC, López C, Otero A (2001) Relationship between atmospheric pressure and mortality in the Madrid Autonomus Region: a time series study. Int J Biometeorol 45:34–40CrossRefPubMedGoogle Scholar
  23. Grize L, Huss A, Thommen O, Schindler C et al (2005) Heat wave 2003 and mortality in Switzerland. Swiss Med Wkly 135:200–205PubMedGoogle Scholar
  24. Hajat S, Haines A (2002) Associations of cold temperatures with GP consultations for respiratory and cardiovascular diseases amongst the elderly in London. Int J Epidemiol 31:825–830CrossRefPubMedGoogle Scholar
  25. Havenit G (2002) Interaction of clothing and thermoregulation (review). Exp Dermatology 1:221–268CrossRefGoogle Scholar
  26. Huynen MM, Martens P, Schram D et al (2001) The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ Health Perspect 109:463–470PubMedCrossRefGoogle Scholar
  27. Institut de veille sanitaire (INVS) (2004) Vague de chaleur de l’été 2003: relations entre température, pollution atmosphérique et mortalité dans neuf villes françaises.
  28. Instituto Nacional de Estadística (I.N.E) (2002)
  29. Jones TS, Liang AP, Kilbourne EM et al (1982) Morbidity and mortality associated with the July 1980 heat wave in St Louis and Kansas City, MO. JAMA 247:3327–3331CrossRefPubMedGoogle Scholar
  30. Kalkstein LS (1991) A new approach to evaluate the impact of climate on human health. Environ Health Perspect 96:145–150PubMedCrossRefGoogle Scholar
  31. Katsouyanni K, Pantazopulu A, Toulomi G (1993) Evidence for interaction between air pollution and high temperature in the causation of excess mortality. Arch Environ Health 48:235–242PubMedCrossRefGoogle Scholar
  32. Katsouyanni K, Touloumi G, Spix C et al (1997) Short-term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: results from time series data from the APHEA Project. BMJ 314:1658–1663PubMedGoogle Scholar
  33. Keatinge WR, Coleshaw SR, Holmes J (1989) Changes in seasonal mortalities with improvement in home heating in England and Wales from 1964 to 1984. Int J Biometeorol 33:71–76CrossRefPubMedGoogle Scholar
  34. Kelsall JE, Samet JM, Seger SL, Xu J (1997) Air pollution and mortality in Philadelphia, 1947–1988. Am J Epidemiol 140:943–955Google Scholar
  35. Khaw KT (1995) Temperature and cardiovascular mortality. Lancet 345:337–338CrossRefPubMedGoogle Scholar
  36. Kilbourne EM (1992) Illness due to thermal extremes. In: Las JM, Wallace RB (eds) Public health and preventative medicine. Appleton Lang, Norwalk, CT, pp 491–501Google Scholar
  37. Kilbourne EM (1999) The spectrum of illness during heat waves. Am J Prev Med 16:359–360CrossRefPubMedGoogle Scholar
  38. Kunst AE, Looman CWN, Mackenbach JP (1993) Outdoor air temperature and mortality in the Netherlands: a time-series analysis. Am J Epidemiol 137:331–341PubMedGoogle Scholar
  39. Linares C, Díaz J, Tobías A, de Miguel JM, Otero A (2006) Air pollutants and noise levels over daily hospital admissions in children in Madrid: a time series analysis. Int Arch Occup Environ Health 79:143–152CrossRefPubMedGoogle Scholar
  40. Makridakis S, Wheelwright SC, McGee VE (1983) Forecasting methods and applications. Wiley, San FranciscoGoogle Scholar
  41. Martín B (2002) Días de frío extremo en Madrid. Unpublished. Trabajo Académicamente Dirigido. Universidad Complutense de MadridGoogle Scholar
  42. Martínez F, Simón Soria F, López-Abente G (2004) Valoración del impacto de la ola de calor del verano de 2003 sobre la mortalidad. Gac Sanit 18[Suppl 1]:250–258PubMedCrossRefGoogle Scholar
  43. O’Neill MS, Zanobetti A, Schwartz J (2003) Modifiers of the temperature and mortality association in seven US cities. Am J Epidemiol 157:1074–1082CrossRefPubMedGoogle Scholar
  44. Ordóñez C, Mathis H, Furger M et al (2004) Changes of daily surface ozone maxima in Switzerland in all seasons from 1992 to 2002 and discussion of summer 2003. Atmos Chem Phys Discuss 4:7048–7088CrossRefGoogle Scholar
  45. Pan WH, Li LA, Tsai MJ (1995) Temperature extremes and mortality from coronary heart disease and cerebral infarction in elderly Chinese. Lancet 345:353–355CrossRefPubMedGoogle Scholar
  46. Pajares MS, Díaz J, Montero JC, Alberdi JC, Mirón IJ (1997) Mortalidad diaria en la Comunidad de Madrid durante el periodo 1986–1991 para el grupo de edad de 45 a 64 años: Su relación con la temperatura del aire. Gac Sanit 71:149–160Google Scholar
  47. Prieto L, García R, Díaz J, Hernández E, Teso T (2002) NAO Influence on extreme winter temperatures in Madrid (Spain). Ann Geophys 20:1–9CrossRefGoogle Scholar
  48. Rainham DGC, Smoyer-Tomic KE (2003) The role of air pollution in the relationship between a heat stress index and human mortality in Toronto. Environ Res 93:9–19CrossRefPubMedGoogle Scholar
  49. Samet J, Zeger S, Kelsall J et al (1998) Does weather confound or modify the association of particulate air pollution with mortality? An analysis of the Philadelphia data, 1973–1980. Environ Res 77:9–19CrossRefPubMedGoogle Scholar
  50. Sartor F, Snacken R, Demuth C et al (1995) Temperature ambient, ozone levels and mortality during summer 1994, in Belgium. Environ Res 70:105–113CrossRefPubMedGoogle Scholar
  51. Shumway RH, Azari AS, Pawitan Y (1998) Modelling mortality fluctuations in Los Angeles as functions of pollution and weather effect. Environ Res 45:224–241CrossRefGoogle Scholar
  52. Sunyer J, Castellsague J, Sáez M et al (1996) Air pollution and mortality in Barcelona. J Epidemiol Community Health 50[Suppl 1]:76–80CrossRefGoogle Scholar
  53. Thakur CP, Anand MP, Shahi MP (1987) Cold weather and myocardial infarction. Int J Cardiol 16:19–25CrossRefPubMedGoogle Scholar
  54. Tobías A, Díaz J, Sáez M (2001) Use of poisson regression and box-jenkins models to evaluate the short term effects of environmental noise levels on Health in Madrid, Spain. Eur J Epidemiol 17:765–771CrossRefPubMedGoogle Scholar
  55. Wen-Harn Pan, Luang-An L, Ming-Jan T (1995) Temperature extremes and mortality from coronary heart disease and cerebral infarction in elderly Chinese. Lancet 345:353–355CrossRefPubMedGoogle Scholar
  56. WHO (2004) Heat waves: risks and responses. Health and Global Environmental Change, Series No. 2Google Scholar

Copyright information

© ISB 2006

Authors and Affiliations

  • Julio Díaz
    • 1
  • Cristina Linares
    • 1
  • Aurelio Tobías
    • 2
  1. 1.Dpto. de Educación para el Desarrollo SostenibleAyuntamiento de MadridMadridSpain
  2. 2.Mathematics Department, Faculty of ScienceBarcelona Autonomous UniversityBarcelonaSpain

Personalised recommendations