Der Schmerz

, Volume 27, Issue 2, pp 174–181

Retardiertes Tapentadol bei Phantomschmerzen

Eine Fallserie
Originalien

Zusammenfassung

Hintergrund

Immer noch stellt die erfolgreiche Behandlung von Phantomschmerzen aufgrund des letztlich ungeklärten Pathomechanismus eine große Herausforderung dar. Eine Therapie mit Tapentadol wurde bisher nicht beschrieben.

Patienten und Methoden

Wir berichten über die erfolgreiche orale Behandlung mit retardiertem Tapentadol in unterschiedlicher Dosierung bei 5 Patienten mit Phantomschmerzen der unteren und oberen Extremität.

Ergebnisse

Bei 4 Patienten zeigte sich eine stark verbesserte Schmerzlinderung von 4–6,5 auf einer visuellen Analogskala (VAS). Beim fünften Patienten stieg die Schlafdauer pro Nacht von 2 auf 5 h und die Phantomschmerzattacken verringerten sich um etwa 30 %. Bei 2 Patienten konnte die zusätzliche Medikation gesenkt oder zeitlich gestreckt werden. Nebenwirkungen (Schwindel, Müdigkeit) wurden nur in einem Fall beobachtet.

Schlussfolgerung

Die beschriebenen Fälle sind ein erster Hinweis darauf, dass die synergistische Kombination des µ-Opioidrezeptor(MOR)-Agonismus und der Noradrenalinwiederaufnahmehemmung (NRI) in Tapentadol einen Nutzen bei der Behandlung von Phantomschmerzen darstellen könnte.

Schlüsselwörter

Amputation μ-Opioid-Agonismus Noradrenalinwiederaufnahmehemmung Phantomschmerz Tapentadol 

Prolonged-release tapentadol for phantom pain

A case series

Abstract

Objectives

The successful therapy of phantom pain remains a major challenge, because the underlying pathophysiological mechanisms are still not fully understood. A therapeutic approach with tapentadol has not been described so far.

Patients and methods

Five patients suffering upper and lower extremity phantom pain were successfully treated with tapentadol (prolonged release) with differing doses.

Results

In 4 patients, a strongly reduced pain intensity between 4 and 6.5 on the visual analog scale (VAS) was recorded. The fifth patient reported an increase in the nocturnal sleep duration from 2 to 5 h and a decrease in the number of phantom pain attacks by 30 %. In 2 patients, the additional medication could be lowered or stretched. Side effects (vertigo, fatigue) were only observed in one subject.

Conclusion

The cases described provide preliminary evidence that the synergistic combination of μ-opioid receptor agonism (MOR) and noradrenalin re-uptake inhibition (NRI) provided by tapentadol may be beneficial in the treatment of phantom pain.

Keywords

Amputation μ-opioid agonism Noradrenalin re-uptake inhibition Phantom limb Tapentadol 

Literatur

  1. 1.
    Ephraim PL, Wegener ST, MacKenzie EJ et al (2005) Phantom pain, residual limb pain, and back pain in amputees: results of a national survey. Arch Phys Med Rehabil 86:1910–1919PubMedCrossRefGoogle Scholar
  2. 2.
    Hanley MA, Ehde DM, Campbell KM et al (2006) Self-reported treatments used for lower-limb phantom pain: descriptive findings. Arch Phys Med Rehabil 87:270–277PubMedCrossRefGoogle Scholar
  3. 3.
    Richardson C, Glenn S, Nurmikko T, Horgan M (2006) Incidence of phantom phenomena including phantom limb pain 6 months after major lower limb amputation in patients with peripheral vascular disease. Clin J Pain 22:353–358PubMedCrossRefGoogle Scholar
  4. 4.
    Flor H, Bierbaumer N (2000) Phantom limb pain: cortical plasticity and novel therapeutic approaches. Curr Opin Anaesthesiol 13:561–564PubMedCrossRefGoogle Scholar
  5. 5.
    Manchikanti L, Singh V (2004) Managing phantom pain. Pain Physician 7:365–375PubMedGoogle Scholar
  6. 6.
    Ramachandran VS, Altschuler EL (2009) The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain 132:1693–1710PubMedCrossRefGoogle Scholar
  7. 7.
    Seidel S, Kasprian G, Sycha T, Auff E (2009) Mirror therapy for phantom limb pain – a systematic review. Wien Klin Wochenschr 121:440–444PubMedCrossRefGoogle Scholar
  8. 8.
    Flor H (2008) Maladaptive plasticity, memory for pain and phantom limb pain: review and suggestions for new therapies. Expert Rev Neurother 8:809–818PubMedCrossRefGoogle Scholar
  9. 9.
    Moseley GL (2006) Graded motor imagery for pathologic pain: a randomized controlled trial. Neurology 67:2129–2134PubMedCrossRefGoogle Scholar
  10. 10.
    Flor H (2002) Phantom-limb pain: characteristics, causes, and treatment. Lancet Neurol 1:182–189PubMedCrossRefGoogle Scholar
  11. 11.
    Flor H, Elbert T, Knecht S et al (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375:482–484PubMedCrossRefGoogle Scholar
  12. 12.
    Huse E, Larbig W, Birbaumer N, Flor H (2001) Cortical reorganization and pain. Empirical findings and therapeutic implication using the example of phantom pain. Schmerz 15:131–137PubMedCrossRefGoogle Scholar
  13. 13.
    Karl A, Muhlnickel W, Kurth R, Flor H (2004) Neuroelectric source imaging of steady-state movement-related cortical potentials in human upper extremity amputees with and without phantom limb pain. Pain 110:90–102PubMedCrossRefGoogle Scholar
  14. 14.
    Wartan SW, Hamann W, Wedley JR, McColl I (1997) Phantom pain and sensation among British veteran amputees. Br J Anaesth 78:652–659PubMedCrossRefGoogle Scholar
  15. 15.
    Tzschentke TM et al (2006) Tapentadol Hydrochloride. Drugs Fut 31:1053–1061CrossRefGoogle Scholar
  16. 16.
    Tzschentke TM et al (2009) Tapentadol hydrochloride: a next-generation, centrally acting analgesic with two mechanisms of action in a single molecule. Drugs Today 45:483–496PubMedGoogle Scholar
  17. 17.
    Kress HG (2010) Tapentadol and its two mechanisms of action: Is there a new pharmacological class of centrally-acting analgesics on the horizon? Eur J Pain 14:781–783PubMedCrossRefGoogle Scholar
  18. 18.
    Lange B et al (2010) Efficacy and safety of tapentadol prolonged release for chronic osteoarthritis pain and low back pain. Adv Ther 27:381–399PubMedCrossRefGoogle Scholar
  19. 19.
    Fachinformation Palexia® retard. Stand 2010Google Scholar
  20. 20.
    Wilder-Smith CH, Hill LT, Laurent S (2005) Postamputation pain and sensory changes in treatment-naive patients: characteristics and responses to treatment with tramadol, amitriptyline, and placebo. Anesthesiology 103:619–628PubMedCrossRefGoogle Scholar
  21. 21.
    Steigerwald I et al (2012) Effectiveness and safety of tapentadol prolonged release for severe, chronic low back pain with or without a neuropathic pain component: results of an open-label, phase 3b study. Cur Med Res Opin 28:911–936CrossRefGoogle Scholar
  22. 22.
    Perl ER (1999) Causalgia, pathological pain, and adrenergic receptors. Proc Natl Acad Sci U S A 96:7664–7667CrossRefGoogle Scholar
  23. 23.
    Colado MI, Del Rio J, Peralta E (1994) Neonatal guanethidine sympathectomy suppresses autotomy and prevents changes in spinal and supraspinal monoamine levels induced by peripheral deafferentation in rats. Pain 56:3–8PubMedCrossRefGoogle Scholar
  24. 24.
    O’Halloran KD, Perl ER (1997) Effects of partial nerve injury on the responses of C-fiber polymodal nociceptors to adrenergic agonists. Brain Res 759:233–240CrossRefGoogle Scholar
  25. 25.
    Sato J, Perl ER (1991) Adrenergic excitation of cutaneous pain receptors induced by peripheral nerve injury. Science 251:1608–1610PubMedCrossRefGoogle Scholar
  26. 26.
    Kern U et al (2009) Prävalenz und Risikofaktoren von Phantomschmerzen und Phantomwahrnehmungen in Deutschland. Schmerz 23:479–488PubMedCrossRefGoogle Scholar
  27. 27.
    Etropolski et al (2009) Efficacy and tolerability of tapentadol extended release for diabetic peripheral neuropathic pain: Results of a randomized-withdrawal, double-blind, placebo-controlled phase 3 study. Poster, präsentiert im Rahmen des Annual Meeting of the American Academy of Neurology (AAN). 25. April bis 2. Mai 2009. Seattle, WashingtonGoogle Scholar
  28. 28.
    Christoph T, Méen M, De Vry J, Tzschentke TM (2007) Efficacy of tapentadol, a novel centrally acting analgesic with a dual mode of action, in animal models of chronic neuropathic pain. Poster presented at the Second International Congress on Neuropathic Pain. Berlin, DeutschlandGoogle Scholar
  29. 29.
    Tzschentke TM, De Vry J, Christoph T et al (2006) Tapentadol, a novel centrally acting analgesic: preclinical evidence for a dual mode of action underlying its broad efficacy profile. Poster presented at the 5th Congress of the European Federation of IASP® Chapters (EFIC). Istanbul, TurkeyGoogle Scholar
  30. 30.
    Tzschentke TM, Christoph T, Kögel B (2007) (-)-(1R,2R)-3-(3-Dimethylamino-1-ethyl-2-methyl-propyl)-phenol hydrochloride (Tapentadol HCl): a novel μ-opioid receptor agonist/norepinephrine reuptake inhibitor with broad-spectrum analgesic properties. J Pharmacol Exp Ther 323:265–276Google Scholar
  31. 31.
    Tzschentke TM, Christoph T, Méen M et al (2007) Efficacy profile of tapentadol, a novel centrally active analgesic with a combined mode of action, in animal pain models. Poster presented at the 37th Annual Meeting of the Society for Neuroscience (SfN). San Diego, KalifornienGoogle Scholar
  32. 32.
    Spiegel DR, Lappinen E, Gottlieb M (2010) A presumed case of phantom limb pain treated successfully with duloxetine and pregabalin. Gen Hosp Psychiatry 32:228.e225–e227PubMedGoogle Scholar
  33. 33.
    Alviar MJ, Hale T, Dungca M (o J) Pharmacologic interventions for treating phantom limb pain. Cochrane Database Syst Rev 12:CD006380Google Scholar
  34. 34.
    Robinson LR, Czerniecki JM, Ehde DM et al (2004) Trial of amitriptyline for relief of pain in amputees: results of a randomized controlled study. Arch Phys Med Rehabil 85:1–6PubMedCrossRefGoogle Scholar
  35. 35.
    Bee LA, Dickenson AH (2009) The importance of the descending monoamine system for the pain experience and its treatment. F1000 Med Rep 1Google Scholar
  36. 36.
    Schwarzer A, Glaudo S, Zenz M, Maier C (2007) Mirror feed-back – a new method for the treatment of neuropathic pain. Dtsch Med Wochenschr 132:2159–2162PubMedCrossRefGoogle Scholar
  37. 37.
    Moseley GL, Wiech K (2009) The effect of tactile discrimination training is enhanced when patients watch the reflected image of their unaffected limb during training. Pain 144:314–319PubMedCrossRefGoogle Scholar
  38. 38.
    Flor H, Denke C, Schaefer M, Grusser S (2001) Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. Lancet 357:1763–1764PubMedCrossRefGoogle Scholar
  39. 39.
    MacIver K, Lloyd DM, Kelly S et al (2008) Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery. Brain 131:2181–2191PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Murray CD, Pettifer S, Howard T et al (2007) The treatment of phantom limb pain using immersive virtual reality: three case studies. Disabil Rehabil 29:1465–1469PubMedCrossRefGoogle Scholar
  41. 41.
    Cole J, Crowle S, Austwick G, Slater DH (2009) Exploratory findings with virtual reality for phantom limb pain; from stump motion to agency and analgesia. Disabil Rehabil 31:846–854PubMedCrossRefGoogle Scholar
  42. 42.
    Reinersmann A, Haarmeyer GS, Blankenburg M et al (2011) Comparable disorder of the body schema in patients with complex regional pain syndrome (CRPS) and phantom pain. Schmerz 25:558–562PubMedCrossRefGoogle Scholar
  43. 43.
    Schwarzer A, Zenz M, Maier C (2009) Therapy of phantom limb pain. Anasthesiol Intensivmed Notfallmed Schmerzther 44:174–180PubMedCrossRefGoogle Scholar
  44. 44.
    Manchikanti L, Singh V (2004) Managing phantom pain. Pain Physician 7:365–375PubMedGoogle Scholar
  45. 45.
    Bone M, Critchley P, Buggy DJ (2002) Gabapentin in postamputation phantom limb pain: a randomized, double-blind, placebo-controlled, cross-over study. Reg Anesth Pain Med 27:481–486PubMedGoogle Scholar
  46. 46.
    Gross D (1982) Contralateral local anaesthesia in the treatment of phantom limb and stump pain. Pain 13:313–320PubMedCrossRefGoogle Scholar
  47. 47.
    Casale R, Ceccherelli F, Labeeb AA, Biella GE (2009) Phantom limb pain relief by contralateral myofascial injection with local anaesthetic in a placebo-controlled study: preliminary results. J Rehabil Med 41:418–422Google Scholar
  48. 48.
    Jaeger H, Maier C, Wawersik J (1988) Postoperative treatment of phantom pain and causalgias with calcitonin. Anaesthesist 37:71–76PubMedGoogle Scholar
  49. 49.
    Jaeger H, Maier C (1992) Calcitonin in phantom limb pain: a double-blind study. Pain 48:21–27PubMedCrossRefGoogle Scholar
  50. 50.
    Simanski C, Lempa M, Koch G et al (1999) Therapy of phantom pain with salmon calcitonin and effect on postoperative patient satisfaction. Chirurg 70:674–681PubMedCrossRefGoogle Scholar
  51. 51.
    Huse E, Larbig W, Flor H, Birbaumer N (2001) The effect of opioids on phantom limb pain and cortical reorganization. Pain 90:47–55PubMedCrossRefGoogle Scholar
  52. 52.
    Bannister K, Bee LA, Dickenson AH (2009) Preclinical and early clinical investigations related to monoaminergic pain modulation. Neurotherapeutics 6:703–712PubMedCrossRefGoogle Scholar
  53. 53.
    Schwenkreis P, Witscher K, Janssen F et al (2000) Changes of cortical excitability in patients with upper limb amputation. Neurosci Lett 293:143–146PubMedCrossRefGoogle Scholar
  54. 54.
    Subedi B, Grossberg GT (2011) Phantom limb pain: mechanisms and treatment approaches. Pain Res Treat 2011:864605PubMedCentralPubMedGoogle Scholar

Copyright information

© Deutsche Schmerzgesellschaft e.V. 2013

Authors and Affiliations

  1. 1.Institut für Schmerzmedizin/Schmerzpraxis WiesbadenWiesbadenDeutschland
  2. 2.SchmerzambulanzUniversitätsklinikum Homburg (Saar)Homburg (Saar)Deutschland
  3. 3.Praxis für Anästhesiologie und SchmerztherapieWallenhorstDeutschland

Personalised recommendations