Der Schmerz

, Volume 26, Issue 2, pp 176–184 | Cite as

Wirkung von Botulinumtoxin Typ B auf Stumpfschwitzen und Stumpfschmerzen

Besteht die Chance der indirekten Phantomschmerzreduktion durch bessere Prothesennutzung?
Originalien

Zusammenfassung

Hintergrund

Eine Hyperhidrose des Amputationsstumpfs gehört zu den häufigsten Ursachen einer eingeschränkten Prothesennutzung und Lebensqualität. Sie betrifft etwa 30–50% der Amputierten, 25% leiden zudem unter Hautirritationen. Dies begünstigt möglicherweise Stumpf- und Phantomschmerzen. Diese treten bei geringer Prothesennutzung vermehrt auf. Der Verlauf beider Schmerzarten nach Hyperhidrosisbehandlung von 9 Beinamputierten durch i.c.-Gabe von Botulinumtoxin Typ B (BTX-B) wird in dieser Arbeit beschrieben.

Material und Methoden

9 Beinamputierten mit Stumpfschwitzen wurden zur Behandlung 1750 Einheiten BTX-B injiziert (je 20 i.c.-Injektionen). Vorher sowie nach 4 Wochen und 3 Monaten wurden die Durchschnittswerte der Schmerzstärke [numerische Rating-Skala (NRS): 0–10] der vergangenen Woche für Stumpf- und Phantomschmerzen sowie die Werte für die Beeinträchtigungen bezüglich Stumpfschwitzen, Prothesennutzung und Lebensqualität erfragt.

Ergebnisse

Stumpfschmerzen (n=9) verbesserten sich in dieser sehr kleinen Beobachtungsgruppe nach 3 Monaten hochsignifikant [NRS initial: 5 (4–8); NRS nach 4 Wochen: 4 (3–5), p=0,109; NRS nach 3 Monaten: 3 (2–4), p=0,008], Phantomschmerzen (n=8) tendenziell ebenfalls nach 3 Monaten [NRS initial: 5 (2–8); NRS nach 3 Monaten: 3 (2–5), p=0,109]. Das Stumpfschwitzen vor BTX-B-Gabe wurde durchschnittlich mit einem NRS-Wert von 7 (Interquartilabstand: 6–10) angegeben und verbesserte sich signifikant nach 4 Wochen (NRS: 3 (2–4), p=0,027) und nach 3 Monaten (NRS: 3 (1–4), p=0,020), entsprechend verbesserten sich auch die Beeinträchtigung der Prothesennutzungsdauer (NRS initial: 8; NRS nach 4 Wochen: 2, p=0,023; NRS nach 3 Monaten: 3, p=0,023) und der Lebensqualität (p=0,016 bzw. p=0,023).

Schlussfolgerungen

Die niedrig dosierte i.c.-Gabe von BTX-B verbesserte Stumpfschmerzen in einer Untersuchung an 9 Beinamputierten nach 3 Monaten, auch bestehende Phantomschmerzen verbesserten sich tendenziell. Es wird vermutet, dass das reduzierte Stumpfschwitzen und die dadurch verlängerte Prothesennutzungsdauer die Ursache hierfür sind. Die Ergebnisse und Schlussfolgerungen über mögliche Zusammenhänge sollten in größeren Untersuchungen geprüft werden.

Schlüsselwörter

Stumpfschmerz Phantomschmerz Hyperhidrose Botulinumtoxine Prothesen 

Effect of botulinum toxin type B on residual limb sweating and pain

Is there a chance for indirect phantom pain reduction by improved prosthesis use?

Abstract

Objectives

Hyperhidrosis of a residual limb after amputation is one of the most common reasons for impaired prosthesis use and quality of life and affects 30–50% of all amputees causing skin irritation in about 25%. Thus the probability of residual limb pain increases in addition to an increased likelihood of phantom pain due to shorter duration of prothesis use. Development of both types of pain was studied following treatment of hyperhidrosis in 9 amputees.

Design

A total of 9 lower limb amputees received injections of 1750 units of botulinum toxin type B (BTX-B) for the treatment of hyperhidrosis of a residual limb (20 intracutaneous injections each). Prior to injections and 4 weeks and 3 months afterwards, patients rated the impairments regarding residual limb pain, phantom pain and sweating of the residual limb. Furthermore the duration of use of the prosthetic device and quality of life were rated on a numeric rating scale (NRS 0–10).

Results

Stump pain (n = 9) was highly significantly reduced after 3 months (baseline: NRS 5; 4 weeks: NRS 4, p = 0.109; 3 months: NRS 3, p = 0.008) and also a tendency for phantom pain after 3 months (baseline NRS 5; 3 months: NRS 3; p = 0.109). Sweating of the residual limb prior to BTX-B application was rated as a median 7 on the NRS scale with significant improvements after 4 weeks (NRS 3, p = 0.027) and 3 months (NRS 3, p = 0.020). Impaired duration of prothesis use improved from NRS 8 to NRS 2 (4 weeks; p = 0.023) and NRS 3 (3 months; p = 0.023) as well as the quality of life (p = 0.016, p = 0.023, respectively).

Conclusions

Residual limb pain improved 3 months after intracutaneous, low-dose BTX-B in a trial with 9 patients and also phantom pain by tendency. Sweating of the residual limb was significantly reduced, probably thereby improving the duration of prothesis use. Larger studies should confirm these findings and conclusions.

Keywords

Residual limb pain Phantom pain Hyperhidrosis Botulinum toxins Artificial limbs 

Notes

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung/en hin: Der Erstautor hat eine Beraterfunktion bei bzw. erhielt Referentenhonorare von den Firmen Astellas, betapharm, Berlin-Chemie, Boehringer Ingelheim, Eisai, Grünenthal, medi Bayreuth und Sanofi Pasteur MSD. Er wurde von der Firma Eisai bei der Durchführung der Untersuchung unterstützt. Die anderen Autoren geben an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Abram SE (2005) Does botulinum toxin have a role in the management of myofascial pain? Anesthesiology 103:223–224PubMedCrossRefGoogle Scholar
  2. 2.
    Ahmad S (1979) Phantom limb pain and propranolol. Br Med J 1:415CrossRefGoogle Scholar
  3. 3.
    Akaike N, Ito Y, Shin MC et al (2010) Effects of A2 type botulinum toxin on spontaneous miniature and evoked transmitter release from the rat spinal excitatory and inhibitory synapses. Toxicon 56:1315–1326PubMedCrossRefGoogle Scholar
  4. 4.
    Allam N, Brasil-Neto JP, Brown G et al (2005) Injections of botulinum toxin type A produce pain alleviation in intractable trigeminal neuralgia. Clin J Pain 21:182–184PubMedCrossRefGoogle Scholar
  5. 5.
    Aoki KR (2004) Botulinum toxin: a successful therapeutic protein. Curr Med Chem 11:3085–3092PubMedGoogle Scholar
  6. 6.
    Ashkenazi A (2010) Botulinum toxin type A for chronic migraine. Curr Neurol Neurosci Rep 10:140–146PubMedCrossRefGoogle Scholar
  7. 7.
    Ashton AC, Dolly JO (1988) Characterization of the inhibitory action of botulinum neurotoxin type A on the release of several transmitters from rat cerebrocortical synaptosomes. J Neurochem 50:1808–1816Google Scholar
  8. 8.
    Bach-Rojecky L, Lackovic Z (2009) Central origin of the antinociceptive action of botulinum toxin type A. Pharmacol Biochem Behav 94:234–238PubMedCrossRefGoogle Scholar
  9. 9.
    Baron R, Maier C (1995) Phantom limb pain: are cutaneous nociceptors and spinothalamic neurons involved in the signaling and maintenance of spontaneous and touch-evoked pain? A case report. Pain 60:223–228PubMedCrossRefGoogle Scholar
  10. 10.
    Birklein F, Eisenbarth G, Erbguth F et al (2003) Botulinum toxin type B blocks sudomotor function effectively: a 6 month follow up. J Invest Dermatol 121:1312–1316Google Scholar
  11. 11.
    Blersch W, Schulte-Mattler WJ, Przywara S et al (2002) Botulinum toxin A and the cutaneous nociception in humans: a prospective, double-blind, placebo-controlled, randomized study. J Neurol Sci 205:59–63Google Scholar
  12. 12.
    Brandt F, O’Connell C, Cazzaniga A et al (2010) Efficacy and safety evaluation of a novel botulinum toxin topical gel for the treatment of moderate to severe lateral canthal lines. Dermatol Surg 36(Suppl 4):2111–2118PubMedCrossRefGoogle Scholar
  13. 13.
    Breit S, Heckmann M (2000) Botulinum toxin. A neurotoxin for dermatologic therapy. Hautarzt 51:874–891PubMedCrossRefGoogle Scholar
  14. 14.
    Brena SF, Sammons EE (1979) Phantom urinary bladder pain – case report. Pain 7:197–201PubMedCrossRefGoogle Scholar
  15. 15.
    Byrnes Ml, Mastaglia FI, Walters SE et al (2005) Primary writing tremor: motor cortex reorganisation and disinhibition. J Clin Neurosci 12:102–104Google Scholar
  16. 16.
    Carmichael NM, Dostrovsky JO, Charlton MP (2010) Peptide-mediated transdermal delivery of botulinum neurotoxin type A reduces neurogenic inflammation in the skin. Pain 149:316–324PubMedCrossRefGoogle Scholar
  17. 17.
    Charles PD (2004) Botulinum neurotoxin serotype A: a clinical update on non-cosmetic uses. Am J Health Syst Pharm 61:11–23Google Scholar
  18. 18.
    Charrow A, DiFazio M, Foster L et al (2008) Intradermal botulinum toxin type A injection effectively reduces residual limb hyperhidrosis in amputees: a case series. Arch Phys Med Rehabil 89:1407–1409PubMedCrossRefGoogle Scholar
  19. 19.
    Cohen SP, Gambel JM, Raja SN et al (2011) The contribution of sympathetic mechanisms to postamputation phantom and residual limb pain: a pilot study. J Pain 12:859–867Google Scholar
  20. 20.
    Colado MI, Del RJ, Peralta E (1994) Neonatal guanethidine sympathectomy suppresses autotomy and prevents changes in spinal and supraspinal monoamine levels induced by peripheral deafferentation in rats. Pain 56:3–8PubMedCrossRefGoogle Scholar
  21. 21.
    Cui M, Khanijou S, Rubino J et al (2004) Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain 107:125–133PubMedCrossRefGoogle Scholar
  22. 22.
    Cui M, Li Z, Khanijou S et al (2003) Subcutaneous administration of botulinumtoxin A inhibits capsaicin-induced thermal hyperalgesia and expansion of dorsal horn neuronal receptive field area. 33rd Annual Scientific Meeting of the Society of Neuroscience, New Orleans/LA), Program No. 812. 13. November 2003Google Scholar
  23. 23.
    Curra A, Trompetto C, Abbruzzese G et al (2004) Central effects of botulinum toxin type A: evidence and supposition. Mov Disord 19(Suppl 8):60–64CrossRefGoogle Scholar
  24. 24.
    Davidson J (2002) A survey of the satisfaction of upper limb amputees with their prostheses, their lifestyles, and their abilities. J Hand Ther 15:62–70Google Scholar
  25. 25.
    Devor M, Janig W (1981) Activation of myelinated afferents ending in a neuroma by stimulation of the sympathetic supply in the rat. Neurosci Lett 24:43–47PubMedCrossRefGoogle Scholar
  26. 26.
    Dillingham TR, Pezzin LE, MacKenzie EJ et al (2001) Use and satisfaction with prosthetic devices among persons with trauma-related amputations: a long-term outcome study. Am J Phys Med Rehabil 80:563–571PubMedCrossRefGoogle Scholar
  27. 27.
    Dodick DW, Turkel CC, Degryse RE et al (2010) Onabotulinumtoxin A for treatment of chronic migraine: pooled results from the double-blind, randomized, placebo-controlled phases of the PREEMPT clinical program. Headache 50:921–936PubMedCrossRefGoogle Scholar
  28. 28.
    Doetsch GS (1997) Progressive changes in cutaneous trigger zones for sensation referred to a phantom hand: a case report and review with implications for cortical reorganization. Somatosens Mot Res 14:6–16PubMedCrossRefGoogle Scholar
  29. 29.
    Dressler D (2006) Pharmacological aspects of therapeutic botulinum toxin preparations. Nervenarzt 77:912–921PubMedCrossRefGoogle Scholar
  30. 30.
    Dressler D, Benecke R (2003) Autonomic side effects of botulinum toxin type B treatment of cervical dystonia and hyperhidrosis. Eur Neurol 49:34–38PubMedCrossRefGoogle Scholar
  31. 31.
    Durham Pl, Cady R (2004) Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: implications for migraine therapy. Headache 44:35–42 (Diskussion: 42–33)Google Scholar
  32. 32.
    Eisenach JH, Atkinson Jl, Fealey RD (2005) Hyperhidrosis: evolving therapies for a well-established phenomenon. Mayo Clin Proc 80:657–666PubMedCrossRefGoogle Scholar
  33. 33.
    Fagius J, Nordin M, Wall M (2002) Sympathetic nerve activity to amputated lower leg in humans. Evidence of altered skin vasoconstrictor discharge. Pain 98:37–45PubMedCrossRefGoogle Scholar
  34. 34.
    Favre-Guilmard C, Auguet M, Chabrier PE (2009) Different antinociceptive effects of botulinum toxin type A in inflammatory and peripheral polyneuropathic rat models. Eur J Pharmacol 617:48–53PubMedCrossRefGoogle Scholar
  35. 35.
    Flor H (2008) Maladaptive plasticity, memory for pain and phantom limb pain: review and suggestions for new therapies. Expert Rev Neurother 8:809–818PubMedCrossRefGoogle Scholar
  36. 36.
    Flynn TC, Clark RE 2nd (2003) Botulinum toxin type B (MYOBLOC) versus botulinum toxin type A (BOTOX) frontalis study: rate of onset and radius of diffusion. Dermatol Surg 29:519–522 (Diskussion: 522)Google Scholar
  37. 37.
    Franchi G, Veronesi C (2004) Time course for the reappearance of vibrissal motor representation following botulinum toxin injection into the vibrissal pad of the adult rat. Eur J Neurosci 20:1873–1884PubMedCrossRefGoogle Scholar
  38. 38.
    Garcia-Morales I, Perez-Bernal A, Camacho F (2007) Letter: Stump hyperhidrosis in a leg amputee: treatment with botulinum toxin A. Dermatol Surg 33:1401–1402PubMedCrossRefGoogle Scholar
  39. 39.
    Gazerani P, Au S, Dong X et al (2010) Botulinum neurotoxin type A (BoNTA) decreases the mechanical sensitivity of nociceptors and inhibits neurogenic vasodilation in a craniofacial muscle targeted for migraine prophylaxis. Pain 151:606–616PubMedCrossRefGoogle Scholar
  40. 40.
    Gazerani P, Pedersen NS, Staahl C et al (2009) Subcutaneous botulinum toxin type A reduces capsaicin-induced trigeminal pain and vasomotor reactions in human skin. Pain 141:60–69PubMedCrossRefGoogle Scholar
  41. 41.
    Gilio F, Curra A, Lorenzano C et al (2000) Effects of botulinum toxin type A on intracortical inhibition in patients with dystonia. Ann Neurol 48:20–26PubMedCrossRefGoogle Scholar
  42. 42.
    Grubeck-Loebenstein B, Korn A, Waldhausl W (1981) The role of adrenergic mechanisms in the blood pressure regulation of leg-amputees. Basic Res Cardiol 76:267–275PubMedCrossRefGoogle Scholar
  43. 43.
    Guyer BM (1999) Botulinum toxin type A: new therapeutic directions. Eur J Neurol 6 121–123Google Scholar
  44. 44.
    Hagberg K, Branemark R (2001) Consequences of non-vascular trans-femoral amputation: a survey of quality of life, prosthetic use and problems. Prosthet Orthot Int 25:186–194PubMedCrossRefGoogle Scholar
  45. 45.
    Hecht MJ, Birklein F, Winterholler M (2004) Successful treatment of axillary hyperhidrosis with very low doses of botulinum toxin B: a pilot study. Arch Dermatol Res 295:318–319PubMedCrossRefGoogle Scholar
  46. 46.
    Jabbari B, Maher N, DiFazio MP (2003) Botulinum toxin A improved burning pain and allodynia in two patients with spinal cord pathology. Pain Med 4:206–210PubMedCrossRefGoogle Scholar
  47. 47.
    Jimenez-Capdeville ME, Reader TA, Molina-Holgado E et al (1996) Changes in extracellular levels of dopamine metabolites in somatosensory cortex after peripheral denervation. Neurochem Res 21:1–6PubMedCrossRefGoogle Scholar
  48. 48.
    Jin L, Kollewe K, Krampfl K et al (2009) Treatment of phantom limb pain with botulinum toxin type A. Pain Med 10:300–303PubMedCrossRefGoogle Scholar
  49. 49.
    Karl A, Muhlnickel W, Kurth R et al (2004) Neuroelectric source imaging of steady-state movement-related cortical potentials in human upper extremity amputees with and without phantom limb pain. Pain 110:90–102PubMedCrossRefGoogle Scholar
  50. 50.
    Kellogg Dl Jr, Pergola PE, Piest Kl et al (1995) Cutaneous active vasodilation in humans is mediated by cholinergic nerve cotransmission. Circ Res 77:1222–1228PubMedGoogle Scholar
  51. 51.
    Kern U, Busch V, Rockland M et al (2009) Prevalence and risk factors of phantom limb pain and phantom limb sensations in Germany. A nationwide field survey. Schmerz 23:479–488PubMedCrossRefGoogle Scholar
  52. 52.
    Kern U, Kohl M, Seifert U et al (2011) Botulinum toxin type B in the treatment of residual limb hyperhidrosis for lower limb amputees: a pilot study. Am J Phys Med Rehabil 90:321–329PubMedCrossRefGoogle Scholar
  53. 53.
    Kern U, Martin C, Scheicher S et al (2004) Does botulinum toxin A make prosthesis use easier for amputees? J Rehabil Med 36:238–239Google Scholar
  54. 54.
    Kern U, Martin C, Scheicher S et al (2004) Effects of botulinum toxin type B on stump pain and involuntary movements of the stump. Am J Phys Med Rehabil 83:396–399PubMedCrossRefGoogle Scholar
  55. 55.
    Kern U, Martin C, Scheicher S et al (2004) Long-term treatment of phantom- and stump pain with Botulinum toxin type A over 12 months. A first clinical observation. Nervenarzt 75:336–340PubMedCrossRefGoogle Scholar
  56. 56.
    Kern U, Martin C, Scheicher S et al (2006) Referred pain from amputation stump trigger points into the phantom limb. Schmerz 20:300, 302–306PubMedCrossRefGoogle Scholar
  57. 57.
    Kern U, Martin C, Scheicher S et al (2003) Treatment of phantom pain with botulinum-toxin A. A pilot study. Schmerz 17:117–124PubMedCrossRefGoogle Scholar
  58. 58.
    Kim HJ, Seo K, Yum KW et al (2002) Effects of botulinum toxin type A on the superior cervical ganglia in rabbits. Auton Neurosci 102:8–12PubMedCrossRefGoogle Scholar
  59. 59.
    Lew MF, Chinnapongse R, Zhang Y et al (2010) Rimabotulinumtoxin B effects on pain associated with cervical dystonia: results of placebo and comparator-controlled studies. Int J Neurosci 120:298–300PubMedCrossRefGoogle Scholar
  60. 60.
    Lin EE, Horasek S, Agarwal S et al (2006) Local administration of norepinephrine in the stump evokes dose-dependent pain in amputees. Clin J Pain 22:482–486PubMedCrossRefGoogle Scholar
  61. 61.
    Lotze M, Grodd W, Birbaumer N et al (1999) Does use of a myoelectric prosthesis prevent cortical reorganization and phantom limb pain? Nat Neurosci 2:501–502PubMedCrossRefGoogle Scholar
  62. 62.
    McNeill Dl, Carlton SM, Hulsebosch CE (1991) Intraspinal sprouting of calcitonin gene-related peptide containing primary afferents after deafferentation in the rat. Exp Neurol 114:321–329PubMedCrossRefGoogle Scholar
  63. 63.
    Mense S (2004) Neurobiological basis for the use of botulinum toxin in pain therapy. J Neurol 251(Suppl 1):I1–I7Google Scholar
  64. 64.
    Minor V (1927) Ein neues Verfahren zu der klinischen Untersuchung der Schweißabsonderung. Z Neurol 101:302–308Google Scholar
  65. 65.
    Montecucco C, Molgo J (2005) Botulinal neurotoxins: revival of an old killer. Curr Opin Pharmacol 5:274–279PubMedCrossRefGoogle Scholar
  66. 66.
    Morenilla-Palao C, Planells-Cases R, Garcia-Sanz N et al (2004) Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J Biol Chem 279:25665–25672Google Scholar
  67. 67.
    Morris Jl, Jobling P, Gibbins Il (2002) Botulinum neurotoxin A attenuates release of norepinephrine but not NPY from vasoconstrictor neurons. Am J Physiol Heart Circ Physiol 283:H2627–H2635PubMedGoogle Scholar
  68. 68.
    Naumann M, So Y, Argoff CE et al (2008) Assessment: botulinum neurotoxin in the treatment of autonomic disorders and pain (an evidence-based review): report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology. Neurology 70:1707–1714PubMedCrossRefGoogle Scholar
  69. 69.
    Pappert EJ, Germanson T (2008) Botulinum toxin type B vs. type A in toxin-naive patients with cervical dystonia: randomized, double-blind, noninferiority trial. Mov Disord 23:510–517PubMedCrossRefGoogle Scholar
  70. 70.
    Park HJ, Lee Y, Lee J et al (2006) The effects of botulinum toxin A on mechanical and cold allodynia in a rat model of neuropathic pain. Can J Anaesth 53:470–477PubMedCrossRefGoogle Scholar
  71. 71.
    Perl ER (1999) Causalgia, pathological pain, and adrenergic receptors. Proc Natl Acad Sci U S A 96:7664–7667CrossRefGoogle Scholar
  72. 72.
    Poluri A, Stickevers S, James K (2006) Poster Board 52: Botulinum toxin type A for hyperhidrosis of the residual limb: A case report. Am J Phys Med Rehabil 85:277CrossRefGoogle Scholar
  73. 73.
    R Development Core Team (2010) R: A language and environment for statistical computing. R foundation for statistical computing. Vienna. ISBN 3-900051-07-0Google Scholar
  74. 74.
    Ranoux D, Attal N, Morain F et al (2008) Botulinum toxin type A induces direct analgesic effects in chronic neuropathic pain. Ann Neurol 64:274–283PubMedCrossRefGoogle Scholar
  75. 75.
    Ruiz HC, Bermejo PE (2008) Botulinum toxin type A in the treatment of neuropathic pain in a case of postherpetic neuralgia. Neurologia 23:259–262Google Scholar
  76. 76.
    Schlereth T, Mouka I, Eisenbarth G et al (2005) Botulinum toxin A (Botox) and sweating-dose efficacy and comparison to other BoNT preparations. Auton Neurosci 117:120–126PubMedCrossRefGoogle Scholar
  77. 77.
    Schwenkreis P, Witscher K, Pleger B et al (2005) The NMDA antagonist memantine affects training induced motor cortex plasticity – a study using transcranial magnetic stimulation. BMC Neurosci 6:35PubMedCrossRefGoogle Scholar
  78. 78.
    Sumitani M, Miyauchi S, Uematsu H et al (2010) Phantom limb pain originates from dysfunction of the primary motor cortex. Masui 59:1364–1369PubMedGoogle Scholar
  79. 79.
    Swartling C, Farnstrand C, Abt G et al (2001) Side-effects of intradermal injections of botulinum A toxin in the treatment of palmar hyperhidrosis: a neurophysiological study. Eur J Neurol 8:451–456PubMedCrossRefGoogle Scholar
  80. 80.
    Tarabal O, Caldero J, Ribera J et al (1996) Regulation of motoneuronal calcitonin gene-related peptide (CGRP) during axonal growth and neuromuscular synaptic plasticity induced by botulinum toxin in rats. Eur J Neurosci 8:829–836PubMedCrossRefGoogle Scholar
  81. 81.
    Voller B, Sycha T, Gustorff B et al (2003) A randomized, double-blind, placebo controlled study on analgesic effects of botulinum toxin A. Neurology 61:940–944PubMedGoogle Scholar
  82. 82.
    Walsh R, Hutchinson M (2007) Molding the sensory cortex: spatial acuity improves after botulinum toxin treatment for cervical dystonia. Mov Disord 22:2443–2446PubMedCrossRefGoogle Scholar
  83. 83.
    Wittekindt C, Liu WC, Preuss SF et al (2006) Botulinum toxin A for neuropathic pain after neck dissection: a dose-finding study. Laryngoscope 116:1168–1171PubMedCrossRefGoogle Scholar
  84. 84.
    Wollina U, Konrad H, Graefe T et al (2000) Botulinum toxin A for focal hyperhidrosis in leg amputees: a case report. Acta Derm Venereol 80:226–227PubMedCrossRefGoogle Scholar
  85. 85.
    Wu H, Sultana R, Taylor KB et al (2012) A prospective randomized double-blinded pilot study to examine the effect of botulinum toxin type A injection versus lidocaine/depomedrol injection on residual and phantom limb pain: initial report. Clin J Pain 28:108–112PubMedCrossRefGoogle Scholar
  86. 86.
    Xiao L, Mackey S, Hui H et al (2011) Subcutaneous injection of botulinum toxin A is beneficial in postherpetic neuralgia. Pain Med 11:1827–1833CrossRefGoogle Scholar
  87. 87.
    Yoon SH, Merrill Rl, Choi JH et al (2010) Use of botulinum toxin type A injection for neuropathic pain after trigeminal nerve injury. Pain Med 11:630–632PubMedCrossRefGoogle Scholar
  88. 88.
    Yuan RY, Sheu JJ, Yu JM et al (2009) Botulinum toxin for diabetic neuropathic pain: a randomized double-blind crossover trial. Neurology 72:1473–1478PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Schmerz- und Palliativzentrum WiesbadenFacharztzentrum medicumWiesbadenDeutschland
  2. 2.Statistisches Institut der Fakultät für Maschinenbau und VerfahrenstechnikHochschule FurtwangenFurtwangenDeutschland
  3. 3.Abteilung für AllgemeinmedizinUniversitätsmedizin MainzMainzDeutschland
  4. 4.Neurologische KlinikUniversitätsmedizin MainzMainzDeutschland

Personalised recommendations