Der Schmerz

, Volume 20, Issue 5, pp 411–417

Zentrale Schmerzverarbeitung bei chronischem Rückenschmerz

Hinweise auf verminderte Schmerzinhibition
  • T. Giesecke
  • R. H. Gracely
  • D. J. Clauw
  • A. Nachemson
  • M. H. Dück
  • R. Sabatowski
  • H. J. Gerbershagen
  • D. A. Williams
  • F. Petzke
Originalien

Zusammenfassung

Hintergrund

Eine vergleichende Untersuchung hatte eine verstärkte zentralnervöse Schmerzverarbeitung bei Patienten mit idiopathischem chronischem Rückenschmerz („chronic low back pain“, LBP) v. a. in den somatosensorischen Kortexarealen (S1, S2) gezeigt. In einer weiteren Analyse untersuchten wir diesen und weitere Unterschiede der neuronalen Aktivierung zwischen LBP und Gesunden im Hinblick auf mögliche zentrale Pathomechanismen.

Methoden

Während der fMRT-Experimente waren Druckschmerzstimuli gleicher Schmerzintensität (mäßig intensiv) am linken Daumennagel in einem Blockparadigma verabreicht worden. In einer weiteren Analyse der fMRT-Daten wurden Unterschiede in der schmerzevozierten neuronalen Aktivierung beider Gruppen statistisch verglichen.

Ergebnisse

Subjektiv gleich schmerzhafte Stimuli lösten bei den Patienten im Bereich des periaquäduktalen Grau (PAG) eine signifikant reduzierte neuronale Aktivierung aus. Dagegen war das Ausmaß der Aktivierung bei LBP in S1, S2 und dem lateralen, orbitofrontalen Kortex (LOFK) signifikant höher als in der Kontrollgruppe.

Schlussfolgerung

Bei Patienten mit LBP könnte eine Funktionsverminderung in den vom PAG kontrollierten absteigenden schmerzinhibierenden Systemen eine mögliche Ursache der klinischen Schmerzsymptomatik sein.

Schlüsselwörter

Rückenschmerz Psychophysische Schmerztestung Druckschmerz Fibromyalgie Funktionelles MRT 

Central pain processing in chronic low back pain

Evidence for reduced pain inhibition

Abstract

Introduction

A study of patients with low back pain (LBP) had revealed altered central pain processing. At an equal pain level LBP patients had considerably more neuronal activation in the somatosensory cortices than controls. In a new analysis of this dataset, we further investigated the differences in central pain processing between LBP patients and controls, looking for possible pathogenic mechanisms.

Methods

Central pain processing was studied by functional magnetic resonance imaging (fMRI), using equally painful pressure stimuli in a block paradigm. In this study, we reanalyzed the fMRI data to statistically compare pain-elicited neuronal activation of both groups.

Results

Equally painful pressure stimulation resulted in a significantly lower increase of regional cerebral blood flow (rCBF) in the periaqueductal gray (PAG) of the LBP patients. The analysis further revealed a significantly higher increase of rCBF in LBP than in HC in the primary and secondary somatosensory cortex and the lateral orbitofrontal cortex (LOFK), elicited by these same stimuli.

Conclusions

These findings support a dysfunction of the inhibitory systems controlled by the PAG as a possible pathogenic mechanism in chronic low back pain.

Keywords

Low back pain Psychophysic pain sensory testing Pressure pain Fibromyalgia Echoplanar imaging 

Literatur

  1. 1.
    Akil H, Mayer DJ, Liebeskind JC (1976) Antagonism of stimulation-produced analgesia by naloxone, a narcotic antagonist. Science 191: 961–962PubMedGoogle Scholar
  2. 2.
    Andersson GBJ (1999) Epidemiological features of chronic low-back pain. Lancet 354: 581–585CrossRefPubMedGoogle Scholar
  3. 3.
    Apkarian AV, Bushnell MC, Treede RD, Zubieta JK (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9: 463–484CrossRefPubMedGoogle Scholar
  4. 4.
    Basbaum AI, Fields HL (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7: 309–338CrossRefPubMedGoogle Scholar
  5. 5.
    Baskin DS, Mehler WR, Hosobuchi Y, Richardson DE, Adams JE, Flitter MA (1986) Autopsy analysis of the safety, efficacy and cartography of electrical stimulation of the central gray in humans. Brain Res 371: 231–236CrossRefPubMedGoogle Scholar
  6. 6.
    Beitz AJ (1982) The sites of origin brain stem neurotensin and serotonin projections to the rodent nucleus raphe magnus. J Neurosci 2: 829–842PubMedGoogle Scholar
  7. 7.
    Boden SD, McCowin PR, Davis DO, Dina TS, Mark AS, Wiesel S (1990) Abnormal magnetic-resonance scans of the cervical spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg [Am] 72: 1178–1184Google Scholar
  8. 8.
    Boivie J, Meyerson BA (1982) A correlative anatomical and clinical study of pain suppression by deep brain stimulation. Pain 13: 113–126CrossRefPubMedGoogle Scholar
  9. 9.
    Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C, Buchel C (2002) Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 125: 1326–1336CrossRefPubMedGoogle Scholar
  10. 10.
    Clauw DJ, Williams D, Lauerman W, Dahlman M, Aslami A, Nachemson AL, Kobrine AI, Wiesel SW (1999) Pain sensitivity as a correlate of clinical status in individuals with chronic low back pain. Spine 24: 2035–2041CrossRefPubMedGoogle Scholar
  11. 11.
    Currie SR, Wang J (2004) Chronic back pain and major depression in the general Canadian population. Pain 107: 54–60CrossRefPubMedGoogle Scholar
  12. 12.
    Deyo RA (2002) Diagnostic evaluation of LBP – reaching a specific diagnosis is often impossible. Arch Intern Med 162: 1444–1447CrossRefPubMedGoogle Scholar
  13. 13.
    Deyo RA, Weinstein JN (2001) Primary care – low back pain. New Eng J Med 344: 363–370CrossRefPubMedGoogle Scholar
  14. 14.
    Ge HY, Madeleine P, Arendt-Nielsen L (2004) Sex differences in temporal characteristics of descending inhibitory control: an evaluation using repeated bilateral experimental induction of muscle pain. Pain 110: 72–78CrossRefPubMedGoogle Scholar
  15. 15.
    Giesecke T, Gracely RH, Grant MA, Nachemson A, Petzke F, Williams DA, Clauw DJ (2004) Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum 50: 613–623CrossRefPubMedGoogle Scholar
  16. 16.
    Giesecke T, Gracely RH, Williams DA, Geisser ME, Petzke FW, Clauw DJ (2005) The relationship between depression, clinical pain, and experimental pain in a chronic pain cohort. Arthritis Rheum 52: 1577–1584CrossRefPubMedGoogle Scholar
  17. 17.
    Gracely RH, Lota L, Walter DJ, Dubner R (1988) A multiple random staircase method of psychophysical pain assessment. Pain 32: 55–63CrossRefPubMedGoogle Scholar
  18. 18.
    Granges G, Littlejohn G (1993) Pressure pain threshold in pain-free subjects, in patients with chronic regional pain syndromes, and in patients with fibromyalgia syndrome. Arthritis Rheum 36: 642–646PubMedGoogle Scholar
  19. 19.
    Grant MAB, Farrell MJ, Kumar R, Clauw DJ, Gracely RH (2001) FMRI evaluation of pain intensity coding in fibromyalgia patients and controls. Arthritis Rheum 44: S394CrossRefGoogle Scholar
  20. 20.
    Gray TS, Magnuson DJ (1992) Peptide immunoreactive neurons in the amygdala and the bed nucleus of the stria terminalis project to the midbrain central gray in the rat. Peptides 13: 451–460CrossRefPubMedGoogle Scholar
  21. 21.
    Hardy SG, Leichnetz GR (1981) Cortical projections to the periaqueductal gray in the monkey: a retrograde and orthograde horseradish peroxidase study. Neurosci Lett 22: 97–101CrossRefPubMedGoogle Scholar
  22. 22.
    Hertzog C, Van Alstine J, Usala PD, Hultsch D, Dixon R (1990) Measurement properties of the center for epidemiological studies depression scale (CES-D) in older populations. Psychol Assess 2: 64–72CrossRefGoogle Scholar
  23. 23.
    Jensen MC, Brant-Zawadzki MN, Obuchowski N, Modic MT, Malkasian D, Ross JS (1994) Magnetic resonance imaging of the lumbar spine in people without back pain. New Eng J Med 331: 69–73CrossRefPubMedGoogle Scholar
  24. 24.
    Kosek E, Hansson P (1997) Modulatory influence on somatosensory perception from vibration and heterotopic noxious conditioning stimulation (HNCS) in fibromyalgia patients and healthy subjects. Pain 70: 41–51CrossRefPubMedGoogle Scholar
  25. 25.
    Leffler AS, Hansson P, Kosek E (2002) Somatosensory perception in a remote pain-free area and function of diffuse noxious inhibitory controls (DNIC) in patients suffering from long-term trapezius myalgia. Eur J Pain 6: 149–159CrossRefPubMedGoogle Scholar
  26. 26.
    Linton SJ (2000) A review of psychological risk factors in back and neck pain. Spine 25: 1148–1156CrossRefPubMedGoogle Scholar
  27. 27.
    Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150: 971–979PubMedGoogle Scholar
  28. 28.
    Mense S, Hoheisel U, Reinert A (1996) The possible role of substance P in eliciting and modulating deep somatic pain. Progr Brain Res 110: 125–135Google Scholar
  29. 29.
    Nachemson A, Vingard E (2000) Assessment of patients with neck and back pain: a best-evidence synthesis. In: Nachemson A, Jonsson E (eds) Neck and back pain. The scientific evidence of causes, diagnosis and treatment. Lippincott, Williams & Wilkins, Philadelphia, pp 189–235Google Scholar
  30. 30.
    Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87: 9868–9872PubMedGoogle Scholar
  31. 31.
    Petrovic P, Ingvar M (2002) Imaging cognitive modulation of pain processing. Pain 95: 1–5CrossRefPubMedGoogle Scholar
  32. 32.
    Peyron R, Garcia-Larrea L, Gregoire MC, Costes N, Convers P, Lavenne F, Mauguiere F, Michel D, Laurent B (1999) Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 122 (Pt 9): 1765–1780CrossRefPubMedGoogle Scholar
  33. 33.
    Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol Clin 30: 263–288PubMedGoogle Scholar
  34. 34.
    Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, Rawlins JN (1999) Dissociating pain from its anticipation in the human brain. Science 284: 1979–1981CrossRefPubMedGoogle Scholar
  35. 35.
    Radloff LS (1977) The CES-D Scale: a self-report depression scale for research in the general population. Appl Psychol Measure 1: 385–401Google Scholar
  36. 36.
    Reynolds DV (1969) Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 164: 444–445PubMedGoogle Scholar
  37. 37.
    Shekelle PG, Markovich M, Louie R (1995) Comparing the costs between provider types of episodes of back pain care. Spine 20: 221–226PubMedGoogle Scholar
  38. 38.
    Shekelle PG, Markovich S, Louie R (1995) An epidemiologic study of episodes of back pain care. Spine 20: 1668–1673PubMedGoogle Scholar
  39. 39.
    Tracey I, Ploghaus A, Gati JS, Clare S, Smith S, Menon RS, Matthews PM (2002) Imaging attentional modulation of pain in the periaqueductal gray in humans. J Neurosci 22: 2748–2752PubMedGoogle Scholar
  40. 40.
    Valet M, Sprenger T, Boecker H, Willoch F, Rummeny E, Conrad B, Erhard P, Tolle TR (2004) Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain – an fMRI analysis. Pain 109: 399–408CrossRefPubMedGoogle Scholar
  41. 41.
    Wilder-Smith OHG, Tassonyi E, Arendt-Nielsen L (2002) Preoperative back pain is associated with diverse manifestations of central neuroplasticity. Pain 97: 189–194CrossRefPubMedGoogle Scholar
  42. 42.
    Worsley KJ, Evans AC, Marrett S, Neelin P (1992) A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12: 900–918PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2006

Authors and Affiliations

  • T. Giesecke
    • 1
  • R. H. Gracely
    • 2
  • D. J. Clauw
    • 2
  • A. Nachemson
    • 3
    • 4
  • M. H. Dück
    • 5
  • R. Sabatowski
    • 5
  • H. J. Gerbershagen
    • 5
  • D. A. Williams
    • 2
  • F. Petzke
    • 5
  1. 1.Klinik für Anästhesiologie und operative IntensivmedizinKlinikum der UniversitätKöln
  2. 2.Division of Rheumatology in the Chronic Pain & Fatigue Research CenterDepartment of Internal Medicine of the University of Michigan, Ann Arbor/USA
  3. 3.Department of OrthopedicsGeorgetown University/Washington D.C./USA
  4. 4.University of Göteborg/Sweden
  5. 5.Klinik für Anästhesiologie und operative IntensivmedizinKlinikum der Universität zu Köln

Personalised recommendations