Der Schmerz

, Volume 20, Issue 3, pp 238–244 | Cite as

Selektive C-Faser-Stimulation durch Stimulation winziger Hautareale

Übersichten

Zusammenfassung

Hintergrund

In der Vergangenheit war es schwierig, die zentrale Verarbeitung primärer C-Faser-Afferenzen separat von der Verarbeitung von Aδ-Faser-Afferenzen zu untersuchen. Eine notwendige und hinreichende Bedingung für eine Untersuchung des C-Faser-Systems ist die selektive Stimulation der primären C-Faser-Afferenz bei gleichzeitiger Vermeidung der Aktivierung der Aδ-Afferenz. Die Stimulation winziger Hautareale ermöglicht eine solche selektive Aktivierung der C-Fasern.

Methoden und Ergebnisse

Wesentliche methodische Aspekte der Stimulation winziger Hautareale sowie Ergebnisse zu evozierten Potenzialen und deren Quellenlokalisationen werden referiert. Des Weiteren werden Potenzial und Möglichkeiten dieser Methode mit anderen Methoden zur Untersuchung der zentralen Verarbeitung humaner C-Faser-Afferenzen verglichen.

Schlussfolgerung

Mit der Methode der Stimulation winziger Hautareale steht ein einfaches Verfahren der selektiven Stimulation von C-Fasern zur Verfügung.

Schlüsselwörter

C-Faser Stimulation winziger Hautareale Laserevozierte Hirnpotenziale (LEP) Methode 

Stimulation of tiny skin areas for selective stimulation of C fibres

Abstract

Background

It has been found difficult to stimulate the primary C-fibre afferents separately from those of Aδ fibres. A necessary and sufficient condition for the investigation of the C-fibre system is the selective stimulation of C fibres without activation of Aδ fibres. The stimulation of tiny skin areas allows such a selective activation of C fibres.

Methods and results

The main aspects of the method for stimulation of tiny skin areas as well as some results obtained by this method are reported here. The application of this method is compared with applications of other methods that allow an investigation of central processing of human C-fibre input.

Conclusion

The stimulation of tiny skin areas represents a simple method for selective stimulation of C fibres.

Keywords

C fibre Stimulation of tiny skin areas Laser-evoked brain potentials (LEP) Method 

Literatur

  1. 1.
    Arendt-Nielsen L, Bjerring P (1988) Reaction times to painless and painful CO2 laser and argon laser stimulation. Eur J Appl Physiol 58:266–273Google Scholar
  2. 2.
    Birbaumer N, Lutzenberger W, Montoya P, Larbig W, Unertl K, Töpfner S, Grodd W, Taub E, Flor H (1997) Effects of regional anesthesia on phantom limb pain are mirrored in changes in cortical reorganization. J Neurosci 17:5503–5508PubMedGoogle Scholar
  3. 3.
    Bragard D (1995) Perception and neurophysiological correlates of brief infrared laser pulses: influence of cutaneous stimulation area. Thesis, Université catholique de Louvain, LouvainGoogle Scholar
  4. 4.
    Bragard D, Chen ACN, Plaghki L (1996) Direct isolation of ultra-late (C-fibre) evoked brain potentials by CO2 laser stimulation of tiny cutaneous surface areas in man. Neurosci Lett 209:81–84CrossRefPubMedGoogle Scholar
  5. 5.
    Bromm B, Neitzel H, Tecklenburg A, Treede R (1983) Evoked cerebral potential correlates of c-fibre activity in man. Neurosci Lett 43:109–114CrossRefPubMedGoogle Scholar
  6. 6.
    Bromm B, Jahnke MT, Treede R-D (1984) Responses of human cutaneous afferents to CO2 laser stimuli causing pain. Exp Brain Res 55:158–166CrossRefPubMedGoogle Scholar
  7. 7.
    Bromm B, Treede R-D (1984) Nerve fibre discharges, cerebral potentials and sensations induced by CO2 laser stimulation. Hum Neurobiol 3:33–40PubMedGoogle Scholar
  8. 8.
    Bromm B, Treede R-D (1987) Human cerebral potentials evoked by CO2 laser stimuli causing pain. Exp Brain Res 67:153–162CrossRefPubMedGoogle Scholar
  9. 9.
    Bromm B, Treede R-D (1991) Laser-evoked cerebral potentials in the assessment of cutaneous pain sensitivity in normal subjects and patients. Rev Neurol 147:625–643PubMedGoogle Scholar
  10. 10.
    Devor M, Carmon A, Frostig R (1982) Primary afferent and spinal sensory neurons that respond to brief pulses of intensive infrared laser radiation: a preliminary survey in rats. Exp Neurol 76:483–494CrossRefPubMedGoogle Scholar
  11. 11.
    Dutsch M, Marthol H, Stemper B, Brys M, Haendl T, Hilz MJ (2002) Small fiber dysfunction predominates in Fabry neuropathy. J Clin Neurophysiol 19:575–586CrossRefPubMedGoogle Scholar
  12. 12.
    Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumer N, Larbig W, Taub E (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375:482–484CrossRefPubMedGoogle Scholar
  13. 13.
    Forss N, Raij TT, Seppa M, Hari R (2005) Common cortical network for first and second pain. NeuroImage 24:132–142CrossRefPubMedGoogle Scholar
  14. 14.
    Gehling M, Tryba M, Niebergall H, Hufschmidt A, Schild M, Geiger K (2003) Komplexe regionale Schmerzsyndrome CRPS I und II. Schmerz 17:309–316CrossRefPubMedGoogle Scholar
  15. 15.
    Handwerker HO, Kobal G (1993) Psychophysiology of experimentally induced pain. Physiol Rev 73:639–671PubMedGoogle Scholar
  16. 16.
    Kakigi R, Shibasaki H, Tanaka K, Ikeda T, Oda KI, Endo C, Ikeda A, Neshige R, Kuroda Y, Miyata K, Yi S, Ikegawa S, Araki S (1991) CO2 laser-induced pain-related somatosensory evoked potentials in peripheral neuropathies: correlation between elektrophysiological and histological findings. Muscle Nerve 14:441–450CrossRefPubMedGoogle Scholar
  17. 17.
    Lankers J, Frieling A, Kunze K, Bromm B (1991) Ultralate cerebral potentials in a patient with hereditary motor and sensory neuropathy type I indicate preserved C-fibre function. J Neurol Neurosurg Psychiat 54:650–652PubMedGoogle Scholar
  18. 18.
    Magerl W, Ali Z, Ellrich J, Meyer RA, Treede R-D (1999) C- and Aδ-fiber components of heat-evoked cerebral potentials in healthy human subjects. Pain 82:127–137CrossRefPubMedGoogle Scholar
  19. 19.
    Maihöfner C, Handwerker HO, Neundörfer B, Birklein F (2003) Patterns of cortical reorganization in complex regional pain syndrome. Neurology 61:1707–1715PubMedGoogle Scholar
  20. 20.
    Mense SS (2004) Funktionelle Neuroanatomie der Schmerzreize. Schmerz 18:225–237CrossRefPubMedGoogle Scholar
  21. 21.
    Mouraux A, Guerit JM, Plaghki L (2004) Refractoriness cannot explain why C-fiber laser-evoked brain potentials are recorded only if concomitant Aδ-fiber activation is avoided. Pain 112:16–26CrossRefPubMedGoogle Scholar
  22. 22.
    Müller H (2000) Neuroplastizität und Schmerzchronifizierung. Anästhesiol Intensivmed Notfallmed Schmerzther 35:274–284Google Scholar
  23. 23.
    Nahra H, Plaghki L (2003) The effects of A-fiber pressure block on perception and neurophysiological correlates of brief non-painful and painful CO2 laser stimuli in humans. Eur J Pain 7:189–199CrossRefPubMedGoogle Scholar
  24. 24.
    Nix WA (2004) Die Bandbreite der Neuropathie bei Diabetes und gestörter Glukosetoleranz. Schmerz 18:327–328CrossRefPubMedGoogle Scholar
  25. 25.
    Ochoa J, Mair WGP (1976) The normal sural nerve in man: I. ultrastructure and number of fibres and cells. Acta Neuropathol (Berlin) 13:197–216Google Scholar
  26. 26.
    Olausson H, Lamarre Y, Backlund H, Morin C, Wallin BG, Starck G, Ekholm S, Strigo I, Worsley K, Vallbo AB, Bushnell MC (2002) Unmyelinated tactile afferents signal touch and project to insular cortex. Nat Neurosci 5:900–904CrossRefPubMedGoogle Scholar
  27. 27.
    Opsommer E, Masquelier E, Plaghki L (1999) Determination of nerve conduction velocity of C-fibres in humans from thermal thresholds to contact heat (thermode) and from evoked brain potentials to radiant heat (CO2 laser). Clin Neurophysiol 29:411–422Google Scholar
  28. 28.
    Opsommer E, Weiss T, Miltner WHR, Plaghki L (2001) Scalp topography of ultralate (C-fibres) evoked potentials following thulium YAG laser stimuli to tiny skin surface areas in humans. Clin Neurophysiol 112:1868–1874CrossRefPubMedGoogle Scholar
  29. 29.
    Opsommer E, Weiss T, Plaghki L, Miltner WHR (2001) Dipole analysis of ultralate (C-fibres) evoked potentials after laser stimulation of tiny cutaneous surface areas in humans. Neurosci Lett 298:41–44CrossRefPubMedGoogle Scholar
  30. 30.
    Orstavik K, Weidner C, Schmidt R, Schmelz M, Hilliges M, Jorum E, Handwerker H, Torebjörk E (2003) Pathological C-fibres in patients with a chronic painful condition. Brain 126:567–578CrossRefPubMedGoogle Scholar
  31. 31.
    Ossipov MH, Zhang ET, Carvajal C, Gardell L, Quirion R, Dumont Y, Lai J, Porreca F (2002) Selective mediation of nerve injury-induced tactile hypersensitivity by neuropeptide Y. J Neurosci 22:9858–9867PubMedGoogle Scholar
  32. 32.
    Plaghki L, Mouraux A (2002) Brain responses to signals ascending through C-fibers. Int Congr Ser 1232:181–192CrossRefGoogle Scholar
  33. 33.
    Plaghki L, Mouraux A (2003) How do we selectively activate skin nociceptors with a high power infrared laser? Physiology and biophysics of laser stimulation. Clin Neurophysiol 33:269–277Google Scholar
  34. 34.
    Ploner M, Gross J, Timmermann L, Schnitzler A (2002) Cortical representation of first and secon pain sensation in humans. Proc Natl Acad Sci USA 99:12444–12448CrossRefPubMedGoogle Scholar
  35. 35.
    Price DD (1988) Psychological and neural mechanisms of pain. Raven Press, New YorkGoogle Scholar
  36. 36.
    Price DD (1996) Selective activation of A-delta and C nociceptive afferents by different parameters of nociceptive heat stimulation: a tool for analysis of central mechanisms of pain. Pain 68:1–3CrossRefPubMedGoogle Scholar
  37. 37.
    Qiu YH, Inui K, Wang XH, Tran TD, Kakigi R (2001) Conduction velocity of the spinothalamic tract in humans as assessed by CO2 laser stimulation of C-fibers. Neurosci Lett 311:181–184CrossRefPubMedGoogle Scholar
  38. 38.
    Qiu YH, Fu Q, Wang XH, Tran TD, Inui K, Iwase S, Kakigi R (2003) Microneurographic study of C-fiber discharges induced by CO2 laser stimulation in humans. Neurosci Lett 353:25–28CrossRefPubMedGoogle Scholar
  39. 39.
    Reinert A, Treede RD, Bromm B (2000) The pain inhibiting pain effect: an electrophysiological study in humans. Brain Res 862:103–110CrossRefPubMedGoogle Scholar
  40. 40.
    Rommel O, Gehring M, Dertwinkel R, Witscher K, Zenz M, Malin JP, Jänig W (1999) Hemisensory impairment in patients with complex regional pain syndrome. Pain 80:95–101CrossRefPubMedGoogle Scholar
  41. 41.
    Schmidt RF, Schaible HG, Messlinger K, Heppelmann B, Hanesch U, Pawlak M (1994) Silent and active nociceptors: structure, functions, and clinical implications. In: Gebhart GF, Hammond DL, Jensen TS (eds) Proceedings of the 7th World Congress of Pain. IASP Press, Seattle, pp 213–250Google Scholar
  42. 42.
    Tarkka IM, Treede R-D (1993) Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser. J Clin Neurophysiol 10:513–519PubMedGoogle Scholar
  43. 43.
    Tran TD, Lam K, Hoshiyama M, Kakigi R (2001) A new method for measuring the conduction velocities of A beta-, A delta- and C-fibers following electric and CO2 laser stimulation in humans. Neurosci Lett 301:187–190CrossRefPubMedGoogle Scholar
  44. 44.
    Tran TD, Inui K, Hoshiyama M, Lam K, Kakigi R (2002) Conduction velocity of the spinothalamic tract following CO2 laser stimulation of C-fibers in humans. Pain 95:125–131CrossRefPubMedGoogle Scholar
  45. 45.
    Treede R-D (2003) Neurophysiological studies of pain pathways in peripheral and central nervous system disorders. J Neurol 250:1152–1161CrossRefPubMedGoogle Scholar
  46. 46.
    Truini A, Haanpaa M, Zucchi R, Galeotti F, Iannetti GD, Romaniello A, Cruccu G (2003) Laser-evoked potentials in post-herpetic neuralgia. Clin Neurophysiol 114:702–709CrossRefPubMedGoogle Scholar
  47. 47.
    Von Giesen HJ, Weiss P, Arendt G, Hefter H (2003) Potential C-fiber damage in Wilson’s disease. Acta Neurol Scand 108:257–261CrossRefPubMedGoogle Scholar
  48. 48.
    Weiss T, Kumpf K, Ehrhardt J, Gutberlet I, Miltner WHR (1997) A bioadaptive approach for experimental pain research in humans using laser-evoked brain potentials. Neurosci Lett 227:95–98CrossRefPubMedGoogle Scholar
  49. 49.
    Weiss T, Miltner WHR, Dillmann J (2003) The influence of semantic priming on event-related potentials to painful laser-heat stimuli in migraine patients. Neurosci Lett 340:135–138CrossRefPubMedGoogle Scholar
  50. 50.
    Weiss T, Miltner WHR, Liepert J, Meissner W, Taub E (2004) Rapid functional plasticity in the primary somatomotor cortex and perceptual changes after nerve block. Eur J Neurosci 20:3413–3423CrossRefPubMedGoogle Scholar
  51. 51.
    Weiss T, Spohn D, Meyer A, Miltner WHR (2004) Ultra-late evoked potentials following stimulation of tiny skin surface areas in humans. Clin Neurophysiol 35:211Google Scholar
  52. 52.
    Willis WD (1985) The pain system. The neural basis of nociceptive transmission in the mammalian nervous system. Karger, BaselGoogle Scholar

Copyright information

© Springer Medizin Verlag 2005

Authors and Affiliations

  1. 1.Institut für Biologische und Klinische PsychologieFriedrich-Schiller-Universität Jena
  2. 2.Institut für Biologische und Klinische PsychologieFriedrich-Schiller-UniversitätJena

Personalised recommendations