Advertisement

Der Schmerz

, Volume 19, Issue 2, pp 109–116 | Cite as

Funktionsstörung der hypothalamisch-hyphophysär-adrenalen Achse bei Patienten mit akuten, chronischen und intervallartigen Schmerzsyndromen

  • M. StrittmatterEmail author
  • O. Bianchi
  • D. Ostertag
  • M. Grauer
  • C. Paulus
  • C. Fischer
  • S. Meyer
Originalien

Zusammenfassung

Einleitung

Komplexe Störungen der hypothalamisch-hypophysär-adrenalen Achse sind ein Phänomen, deren ätiopathogenetische Bedeutung kontrovers beurteilt wird. Die häufige Koinzidenz mit depressiven Symptomen erschwert zusätzlich die Interpretation.

Patienten und Methoden

Bei 20 Patienten mit akuten, 27 mit chronischen Schmerzen des lumbalen Bewegungsapparates sowie 44 Patienten mit intervallartig auftretenden Kopfschmerzformen wurde ein Kortisoltagesprofil und daraus der Tagesmittelwert bestimmt und mit differenzierten algesiemetrischen Daten korreliert.

Ergebnisse

Patienten mit chronischen und intervallartigen Schmerzen hatten signifikant höhere Werte im MPQ und mehr affektive Items als Ausdruck depressiver Symptome als Patienten mit akuten Schmerzen, während sich die 3 Gruppen über die Depressivitätsskala und psychovegetative Beschwerdenliste nicht signifikant unterschieden. Verglichen mit einer altersentsprechenden schmerzfreien Kontrollpopulation (n=17) waren in allen 3 Gruppen neben einzeln erhöhten Tageswerten signifikant erhöhte Kortisoltagesmittelwerte nachweisbar, es konnten aber keine Korrelationen zwischen den Kortisolwerten und sämtlichen algesiemetrischen Daten etabliert werden. Chronische Schmerzpatienten mit hohen Depressionsscores hatten unabhängig von der Schmerzintensität signifikant höhere Kortisolwerte.

Diskussion

Schmerzen führen zu erhöhten Kortisolwerten im Plasma mit signifikanter Anhebung des Tagesmittelwertes. Während beim akuten Schmerz eine unmittelbare, aber unspezifische, nicht an die Schmerzintensität gekoppelte Stressreaktion wahrscheinlich erscheint, scheint bei chronischen und intervallartigen Schmerzformen eine komplexe, ebenfalls schmerzunabhängige dauerhafte Aktivierung der hypothalamisch-hypophysär-adrenalen Achse mit wahrscheinlicher Assoziation zu depressiven Begleitsymptomen und Störungen der hypothalamisch gesteuerten zirkadianen Freisetzungsrhythmik vorzuliegen.

Schlüsselwörter

Hypothalamisch-hyphophysär-adrenale Achse Schmerz Kortisol Neuroendokriner Stress Zirkadiane Rhythmik 

Altered function of the hypothalamic-pituitary-adrenal axis in patients with acute, chronic and episodic pain

Abstract

Introduction

Complex disorders of the hypothalamic-pituitary-adrenal axis constitute phenomena whose etiopathogenetic significance is the subject of controversy. The frequent coincidence with depressive symptoms further complicates interpretation.

Patients and methods

Daily variations in cortisol levels were measured in 20 patients with acute pain, 27 with chronic pain in the lumbar musculoskeletal system, and 44 with episodic forms of headache to determine the daily average and then correlated with differentiated algesimetric data.

Results

Patients with chronic and episodic pain had significantly higher scores on the McGill Pain Questionnaire and more affective items as an expression of depressive symptoms than patients with acute pain. The three groups did not however exhibit significant differences for the depression scale and list of “psychovegetative” disorders. In comparison to an age-matched pain-free control population (n=17), the average daily levels of cortisol were significantly higher in all three groups besides singularly elevated daily levels, but no correlations between the cortisol values and overall algesimetric data could be established. Chronic pain patients with high depression scores had significantly higher cortisol levels irrespective of pain intensity.

Discussion

Pain experiences cause increased plasma cortisol levels with significant elevation of the daily average. Whereas in cases of acute pain, a direct but unspecific stress reaction not connected with the pain seems to be likely, the underlying cause in cases of chronic and episodic pain appears to be a complex and enduring activation of the hypothalamic-pituitary-adrenal axis, likewise independent from pain, probably associated with concomitant depressive symptoms and disruption of the circadian rhythm of release controlled by the hypothalamus.

Keywords

Hypothalamic-pituitary-adrenal axis Pain Cortisol Neuroendocrine stress Circadian rhythm 

Notes

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Literatur

  1. 1.
    Adams HA, Saatweber P, Schmitz CS, Hecker H (2002) Postoperative pain management in orthopaedic patients: no differences in pain score, but improved stress control by epidural anaesthesia. Eur J Anaesthesiol 19:658–665PubMedGoogle Scholar
  2. 2.
    Bain RJ, Poeppinghaus VJ, Jones GM, Peaston MJ (1989) Cortisol levels predicts myocardial infarction in patients with ischaemic chest pain. Int J Cardiol 25:69–72PubMedGoogle Scholar
  3. 3.
    Crofford LJ (2002) The hypothalamic-pituitary-adrenal axis in the pathogenesis of rheumatoid diseases. Endocrinol Metab Clin North Am 31:1–13PubMedGoogle Scholar
  4. 4.
    Ehlert U, Gaab J, Heinrichs M (2001) Psychoneuroendocrinological contributions of the etiology of depression, posttraumatic stress disorder, and stress-related bodily disorders: the role of the hypothalamic-pituitary-adrenal axis. Biol Psychol 57:141–152Google Scholar
  5. 5.
    Ferrari MD, Lataste X (1989) Migraine and other headaches. Parthenon, LondonGoogle Scholar
  6. 6.
    Geenen R, Jacobs JW, Bijlsma JW (2002) Evaluation and management of endocrine dysfunction in fibromyalgia. Rheum Dis Clin North Am 28:389–404PubMedGoogle Scholar
  7. 7.
    Griep EN, Boersma JW, Lentjes EG, Prins AP, van der Korst JK, de Kloet ER (1998) Function of the hypothalamic-pituitary-adrenal axis in patients with fibromyalgia and low back pain. J Rheumatol 25:1374–1381PubMedGoogle Scholar
  8. 8.
    Kassimos D, Choy EH, Grossmann AB, Chikanza IC, Panayi GS (1996) Endogeneous opioid tone in patients with rheumatoid arthritis. Br J Rheumatol 35:436–440PubMedGoogle Scholar
  9. 9.
    Katz J (1992) Psychophysical correlates of phantom limb experience. J Neurol Neurosurg Psychiat 55:811–821PubMedGoogle Scholar
  10. 10.
    Kay J, Findling JW, Raff H (1994) Epidural triamcinolone suppresses the pituitary-adrenal axis in human subjects. Anesth Analg 79:501–505PubMedGoogle Scholar
  11. 11.
    Klerman EB, Goldenberg DL, Brown EN, Maliszewski AM, Adler GK (2001) Circadian rhythms of woman with fibromyalgia. J Clin Endo 86:1034–1039CrossRefGoogle Scholar
  12. 12.
    Korszun A, Sackett-Lundeen L, Papadopoulus E, Brucksch C, Masterson L, Engelberg NC, Haus E, Demitrack MA, Crofford L (1999) Melatonin levels in woman with fibromyalgia and chronic fatigue syndrome. J Rheumatol 26:2675–2680PubMedGoogle Scholar
  13. 13.
    Lariviere WR, Melzack R (2000) The role of cortiocotropin-releasing factor in pain and analgesia. Pain 84:1–12CrossRefPubMedGoogle Scholar
  14. 14.
    Lechin F, van der Dijs B, Vitelli-Florez G, Lechin-Baez S, Azocar J, Cabrera A, Lechin A, Jara H, Lechin M, Gomez F (1990) Psychoneuroendocrinological and immunological parameters in cancer patients: involvement of stress and depression. Psychoneuroendocrinology 15:435–451CrossRefPubMedGoogle Scholar
  15. 15.
    Lechin F, van der Dijs B, Lechin A, Orozco B, Lechin M, Baez S, Rada I, Leon G, Acosta E (1994) Plasma neurotransmitter and cortisol in chronic illness: role of stress. J Med 25:181–192PubMedGoogle Scholar
  16. 16.
    Manyande A, Berg S, Gettings D, Stanford SC, Mazhero S, Mark DF, Salmon P (1995) Preoperative rehearsal of active coping imagery influences subjective and hormonal responses to abdominal surgery. Psychosom Med 2:177–182Google Scholar
  17. 17.
    Marana E, Scambia G, Maussier ML, Parpaglioni R, Ferrandina G, Meo F, Sciarro M, Marana R (2003) Neuroendocrine stress response in patients undergoing benign ovarian cytoscopy surgery by laparoscopy, minilaparotomy, and laparotomy. J Am Assoc Gynecol Laparosc 10:159–165PubMedGoogle Scholar
  18. 18.
    McBeth J, Silman AJ (2001) The role of psychiatric disorders in fibromyalgia. Curr Rheumatol Rep 3:157–164PubMedGoogle Scholar
  19. 19.
    Melzack R (1975) The McGill pain questionnaire: major properties and scoring methods. Pain 1:277–299PubMedGoogle Scholar
  20. 20.
    Mukai E, Nagashima M, Hirano D, Yoshino S (2000) Comparative study of symptoms and neuroendocrinic-immune network mediator levels between rheumatoid arthritis patients and heahthy subjects. Clin Exp Rheumatol 18:585–590PubMedGoogle Scholar
  21. 21.
    Ohno H, Yamashita K, Yahata M (1986) Maternal plasma concentrations of catecholamines and cyclic nucleotides during labor and following delivery. Res Comm Cem Pathol Pharm 51:183–194Google Scholar
  22. 22.
    Ortega AE, Peters JH, Incarbone R, Estrada L, Ehsan A, Kwan Y, Spencer CJ, Moore-Jeffries E, Kuchta K, Nicoloff JT (1996) A prospective randomized comparison of the metabolic and stress hormonal responses of laparoscopic and open cholecystectomy. J Am Coll Surg 3:249–256Google Scholar
  23. 23.
    Peres MF, Sanchez del Rio M, Seabra ML, Tufik S, Abucham J, Cipolla-Neto J, Silberstein SD, Zukerman E (2001) Hypothalamic involvement in chronic migraine. J Neurol Neurosurg Psychiatry 71:747–751CrossRefPubMedGoogle Scholar
  24. 24.
    Perini GI, Devinski O, Hauser P, Gallucci WT, Theodore WH, Chrousos GP, Gold PW, Kling MA (1992) Effects of carbamazepine on pituitary-adrenal function in healthy volunteers. J Clin Endocrinol 74:406–412CrossRefGoogle Scholar
  25. 25.
    Pringsheim T (2002) Cluster headache: evidence for a disorder of circadian rhythm and hypothalamic function. Can J Neurol Sci 29:33–40PubMedGoogle Scholar
  26. 26.
    Rainero I, Valfre W, Savi L, Gentile S, Pinessi L, Gianotti L, Arvat E, Ghigo E, De Rizzo P, Calvelli P, Limone P (2001) Neuroendocrine effects of subcutaneous sumatriptan in patients with migraine. Endocrinol Invest 24:310–314Google Scholar
  27. 27.
    Riedel W, Schlapp U, Leck S, Netter P, Neeck G (2002) Blunted ACTH and cortisol responses to systemic injection of corticotropin-releasing hormone (CRH) in fibromyalgia: role of somatostatin and CRF-binding protein. Ann N Y Acad Sci 996:483–490Google Scholar
  28. 28.
    Rodriguez E, Meizoso MJ, Garabal M, Fernandez MP, Rodriguez-Bujan L, Belmonte A (1992) Effects of transcutaneous nerve stimulation on the plasma and CSF concentrations of beta-endorphin and the plasma concentrations of ACTH, cortisol and prolactin in hysterectomized woman with postoperative pain. Rev Esp Anestesiol 39:6–9Google Scholar
  29. 29.
    Schlienger JL, Perrin AE, Grunenberger F, Goichot B (2001) Hormonal pertubations in fibromyalgia. Ann Endocrinol 62:542–548Google Scholar
  30. 30.
    Sheps DS, Kaufmann PG, Sheffield D, Light KC, McMahon RP, Bonsall R,Maixner W, Carney RM, Freedland KE, Cohen JD, Goldberg AD, Ketterer MW, Raczynski JM, Pepine CJ (2001) Sex differences in chest pain in patients with documented coronary artery disease and exercise-induced ischemia: results from PIMI study. Am Heart J 142:864–871CrossRefPubMedGoogle Scholar
  31. 31.
    Spiegel D, Giese-Davis J (2003) Depression and cancer: mechanisms and disease progression. Biol Psychiatry 1:269–282CrossRefGoogle Scholar
  32. 32.
    Stein C, Mendl G (1988) The German counterpart to Mc Gill pain questionnaire. Pain 32:251–255CrossRefPubMedGoogle Scholar
  33. 33.
    Strittmatter M, Hamann GF, Grauer M, Fischer C, Blaes F, Hoffmann KH, Schimrigk K (1996) Altered activity of the sympathetic nervous system and changes in the balance of hypophyseal, pituitary and adrenal hormones in patients with cluster headache. Neuroreport 17:1229–1234Google Scholar
  34. 34.
    Strittmatter M, Grauer MT, Fischer C, Hamann G, Hoffmann KH, Blaes F, Schimrigk K (1996) Autonomic nervous system and neuroendocrine changes in patients with idiopathic trigeminal neuralgia. Cephalalgia 16:476–480CrossRefPubMedGoogle Scholar
  35. 35.
    Stubbs PJ, Laycock J, Alaghband-Zadeh J, Carter G, Noble MI (1999) Circulating stress hormone and insulin concentrations in acute coronary syndromes: identification of insulin resistance on admission. Clin Sci 96:589–595CrossRefPubMedGoogle Scholar
  36. 36.
    Tsigos C, Chrousos GP (2002) Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 53:865–871CrossRefPubMedGoogle Scholar
  37. 37.
    Von Zerssen D (1976) Klinische Selbstbeurteilungsskalen (Ksb-S) aus dem Münchener Psychiatrischen Informationssystem (PSYCHIS). a) Die Beschwerden-Liste (B-L); b) Die Paranoid-Depressivitätsskala (D-S). Beltz, WeinheimGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • M. Strittmatter
    • 1
    • 6
    Email author
  • O. Bianchi
    • 1
  • D. Ostertag
    • 2
  • M. Grauer
    • 3
  • C. Paulus
    • 4
  • C. Fischer
    • 5
  • S. Meyer
    • 3
  1. 1.Klinik für Neurologie mit Stroke UnitKlinikum Merzig
  2. 2.Neurologische KlinikStädtisches Klinikum Karlsruhe
  3. 3.Neurologische KlinikUniversität des Saarlandes, Homburg
  4. 4.Fachbereich ErziehungswissenschaftUniversität des Saarlandes, Saarbrücken
  5. 5.Klinik für AnästhesiologieKlinikum Saarbrücken
  6. 6.Klinik für Neurologie mit Stroke UnitKlinikum MerzigMerzig

Personalised recommendations