Advertisement

Quantifying the role of individual flood drivers and their correlations in flooding of coastal river reaches

  • María BermúdezEmail author
  • Luis Cea
  • Javier Sopelana
Original Paper

Abstract

Flooding in coastal river reaches is the result of complex interactions between coastal and inland drivers. Flood hazard assessments need to consider how these drivers interact in space and time, for which a standard method is currently lacking. A complex hydrodynamic model is required to reproduce the physics of the combined forcings and, at the same time, to fully explore the combinations of drivers that can occur in order to determine extreme flood frequencies. In this work, we explore the individual role of astronomical tide, storm surge and river discharge and their correlations in the extreme flood levels of a coastal river reach. We apply a computationally efficient surrogate model of a 2D shallow water model based on least squares support vector machines regression to reconstruct 10,000 years-long time series of water levels in the reach. As input to the model, we consider an ensemble of synthetic time series of the flood drivers, which differ in the number of variables considered and in their correlations. Probabilities of exceedance of water levels are then computed and compared. The proposed methodology can give a better understanding of the flooding processes in a multivariable environment, as low-lying coastal urban areas typically are, and can provide guidance on where to focus modelling efforts when developing flood hazard assessments in such areas.

Keywords

Coastal river reach Compound flooding Extreme floods Flood inundation modelling LS-SVM 

Notes

Acknowledgements

María Bermúdez gratefully acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754446 and UGR Research and Knowledge Transfer Found—Athenea3i.

References

  1. Bermúdez M, Zischg AP (2018) Sensitivity of flood loss estimates to building representation and flow depth attribution methods in micro-scale flood modelling. Nat Hazards 92:1633–1648.  https://doi.org/10.1007/s11069-018-3270-7 CrossRefGoogle Scholar
  2. Bermúdez M, Ntegeka V, Wolfs V, Willems P (2018) Development and comparison of two fast surrogate models for urban pluvial flood simulations. Water Resour Manag 32:2801–2815.  https://doi.org/10.1007/s11269-018-1959-8 CrossRefGoogle Scholar
  3. Bermúdez M, Cea L, Puertas J (2019) A rapid flood inundation model for hazard mapping based on least squares support vector machine regression. J Flood Risk Manag 12(S1):e12522.  https://doi.org/10.1111/jfr3.12522 CrossRefGoogle Scholar
  4. Bevacqua E, Maraun D, Hobæk Haff I et al (2017) Multivariate statistical modelling of compound events via pair-copula constructions: analysis of floods in Ravenna (Italy). Hydrol Earth Syst Sci 21:2701–2723.  https://doi.org/10.5194/hess-21-2701-2017 CrossRefGoogle Scholar
  5. Bladé E, Cea L, Corestein G et al (2014) Iber: herramienta de simulación numérica del flujo en ríos. Rev Int Métodos Numéricos para Cálculo y Diseño en Ing 30:1–10.  https://doi.org/10.1016/j.rimni.2012.07.004 CrossRefGoogle Scholar
  6. Brunet M, Jones P (2011) Data rescue initiatives: bringing historical climate data into the 21st century. Clim Res 47:29–40.  https://doi.org/10.3354/cr00960 CrossRefGoogle Scholar
  7. Brunet M, Jones PD, Jourdain S et al (2014) Data sources for rescuing the rich heritage of Mediterranean historical surface climate data. Geosci Data J 1:61–73.  https://doi.org/10.1002/gdj3.4 CrossRefGoogle Scholar
  8. Camus P, Mendez FJ, Medina R, Cofiño AS (2011) Analysis of clustering and selection algorithms for the study of multivariate wave climate. Coast Eng 58:453–462.  https://doi.org/10.1016/j.coastaleng.2011.02.003 CrossRefGoogle Scholar
  9. Cea L, Bermúdez M, Puertas J, et al (2016) Rapid flood inundation modelling in a coastal urban area using a surrogate model of the 2D shallow water equations. In: Proceedings of the 4th European Congress of the International Association of Hydroenvironment Engineering and Research, IAHR 2016, pp 850–855Google Scholar
  10. Chang L-C, Shen H-Y, Wang Y-F et al (2010) Clustering-based hybrid inundation model for forecasting flood inundation depths. J Hydrol 385:257–268.  https://doi.org/10.1016/j.jhydrol.2010.02.028 CrossRefGoogle Scholar
  11. de Almeida GAM, Bates P, Ozdemir H (2018) Modelling urban floods at submetre resolution: challenges or opportunities for flood risk management? J Flood Risk Manag 11:S855–S865.  https://doi.org/10.1111/jfr3.12276 CrossRefGoogle Scholar
  12. De Brabanter K, Suykens JAK, De Moor B (2013) Nonparametric Regression via StatLSSVM. J Stat Softw 55:1–21.  https://doi.org/10.18637/jss.v055.i02 CrossRefGoogle Scholar
  13. de Moel H, Jongman B, Kreibich H et al (2015) Flood risk assessments at different spatial scales. Mitig Adapt Strateg Glob Chang 20:865–890.  https://doi.org/10.1007/s11027-015-9654-z CrossRefGoogle Scholar
  14. Efstratiadis A, Dialynas YG, Kozanis S, Koutsoyiannis D (2014) A multivariate stochastic model for the generation of synthetic time series at multiple time scales reproducing long-term persistence. Environ Model Softw 62:139–152.  https://doi.org/10.1016/J.ENVSOFT.2014.08.017 CrossRefGoogle Scholar
  15. Falter D, Schröter K, Dung NV et al (2015) Spatially coherent flood risk assessment based on long-term continuous simulation with a coupled model chain. J Hydrol 524:182–193.  https://doi.org/10.1016/J.JHYDROL.2015.02.021 CrossRefGoogle Scholar
  16. Falter D, Dung NV, Vorogushyn S et al (2016) Continuous, large-scale simulation model for flood risk assessments: proof-of-concept. J Flood Risk Manag 9:3–21.  https://doi.org/10.1111/jfr3.12105 CrossRefGoogle Scholar
  17. Fill HD, Steiner AA (2003) Estimating instantaneous peak flow from mean daily flow data. J Hydrol Eng 8:365–369.  https://doi.org/10.1061/(ASCE)1084-0699(2003)8:6(365) CrossRefGoogle Scholar
  18. García-Feal O, González-Cao J, Gómez-Gesteira M et al (2018) An accelerated tool for flood modelling based on Iber. Water 10:1459.  https://doi.org/10.3390/w10101459 CrossRefGoogle Scholar
  19. Hawkes PJ (2008) Joint probability analysis for estimation of extremes. J Hydraul Res 46:246–256.  https://doi.org/10.1080/00221686.2008.9521958 CrossRefGoogle Scholar
  20. Hawkes PJ, Svensson C (2005) Joint Probability: Dependence Mapping and Bsest Practice: Technical Report on Dependence Mapping - R&D Technical Report FD2308/TR 1, DEFRA/Environment AgencyGoogle Scholar
  21. Jhong B-C, Wang J-H, Lin G-F (2017) An integrated two-stage support vector machine approach to forecast inundation maps during typhoons. J Hydrol 547:236–252.  https://doi.org/10.1016/j.jhydrol.2017.01.057 CrossRefGoogle Scholar
  22. Kasiviswanathan KS, Sudheer KP (2013) Quantification of the predictive uncertainty of artificial neural network based river flow forecast models. Stoch Environ Res Risk Assess 27:137–146.  https://doi.org/10.1007/s00477-012-0600-2 CrossRefGoogle Scholar
  23. Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics 11:137.  https://doi.org/10.2307/1266770 CrossRefGoogle Scholar
  24. Keylock CJ (2012) A resampling method for generating synthetic hydrological time series with preservation of cross-correlative structure and higher-order properties. Water Resour Res 48:W12521.  https://doi.org/10.1029/2012WR011923 CrossRefGoogle Scholar
  25. Leonard M, Westra S, Phatak A et al (2014) A compound event framework for understanding extreme impacts. Wiley Interdiscip Rev Clim Chang 5:113–128.  https://doi.org/10.1002/wcc.252 CrossRefGoogle Scholar
  26. Lin G-F, Lin H-Y, Chou Y-C (2013) Development of a real-time regional-inundation forecasting model for the inundation warning system. J Hydroinform 15:1391–1407.  https://doi.org/10.2166/hydro.2013.202 CrossRefGoogle Scholar
  27. Liu Y, Pender G (2015) A flood inundation modelling using v-support vector machine regression model. Eng Appl Artif Intell 46:223–231.  https://doi.org/10.1016/j.engappai.2015.09.014 CrossRefGoogle Scholar
  28. Liu Q, Qin Y, Li G et al (2018) Fast simulation of large-scale floods based on GPU parallel computing. Water 10:589.  https://doi.org/10.3390/w10050589 CrossRefGoogle Scholar
  29. MARM (2011) Guía Metodológica para el Desarrollo del Sistema Nacional de Cartografía de Zonas Inundables. Ministerio de Medio Ambiente y Medio Rural y Marino, Centro de Publicaciones, MadridGoogle Scholar
  30. Overpeck JT, Meehl GA, Bony S, Easterling DR (2011) Climate data challenges in the 21st century. Science 331:700–702.  https://doi.org/10.1126/science.1197869 CrossRefGoogle Scholar
  31. Pérez Gómez B (2014) Design and implementation of an operational sea level monitoring and forecasting system for the Spanish coast. University of Cantabria, SantanderGoogle Scholar
  32. Peterson TC, Manton MJ (2008) Monitoring changes in climate extremes: a tale of international collaboration. Bull Am Meteorol Soc 89:1266–1271CrossRefGoogle Scholar
  33. Petroliagkis TI, Voukouvalas E, Disperati J, Bidlot J (2016) Joint probabilities of storm surge, significant wave height and river discharge components of coastal flooding events utilising statistical dependence methodologies & techniques. European Commission, Joint Research Centre, Publications Office of the European Union, BrusselsGoogle Scholar
  34. Razavi S, Tolson BA, Burn DH (2012) Review of surrogate modeling in water resources. Water Resour Res 48:W07401.  https://doi.org/10.1029/2011WR011527 CrossRefGoogle Scholar
  35. Sadegh M, Moftakhari H, Gupta HV et al (2018) Multihazard Scenarios for Analysis of Compound Extreme Events. Geophys Res Lett 45:5470–5480.  https://doi.org/10.1029/2018GL077317 CrossRefGoogle Scholar
  36. Schumann GJ-P, Stampoulis D, Smith AM et al (2016) Rethinking flood hazard at the global scale. Geophys Res Lett 43:10249–10256.  https://doi.org/10.1002/2016gl070260 CrossRefGoogle Scholar
  37. Seneviratne SI, Nicholls N, Easterling D et al (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB et al (eds) Intergovernmental panel on climate change special report on managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, CambridgeGoogle Scholar
  38. Serafin KA, Ruggiero P, Parker KA, Hill DF (2019) What’s streamflow got to do with it? A probabilistic simulation of the competing oceanographic and fluvial processes driving extreme along-river water levels. Nat Hazards Earth Syst Sci 19:1415–1431.  https://doi.org/10.5194/nhess-19-1415-2019 CrossRefGoogle Scholar
  39. Serinaldi F (2015) Dismissing return periods! Stoch Environ Res Risk Assess 29:1179–1189.  https://doi.org/10.1007/s00477-014-0916-1 CrossRefGoogle Scholar
  40. Sopelana J, Cea L, Ruano S (2018) A continuous simulation approach for the estimation of extreme flood inundation in coastal river reaches affected by meso- and macrotides. Nat Hazards 93:1337–1358.  https://doi.org/10.1007/s11069-018-3360-6 CrossRefGoogle Scholar
  41. Storlie CB, Swiler LP, Helton JC, Sallaberry CJ (2009) Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models. Reliab Eng Syst Saf 94:1735–1763.  https://doi.org/10.1016/j.ress.2009.05.007 CrossRefGoogle Scholar
  42. Suykens JAK, Van Gestel T, De Brabanter J et al (2002) Least squares support vector machines. World Scientific, SingaporeCrossRefGoogle Scholar
  43. Svensson C, Jones DA (2002) Dependence between extreme sea surge, river flow and precipitation in eastern Britain. Int J Climatol 22:1149–1168.  https://doi.org/10.1002/joc.794 CrossRefGoogle Scholar
  44. Taguas EV, Ayuso JL, Pena A et al (2008) Testing the relationship between instantaneous peak flow and mean daily flow in a Mediterranean Area Southeast Spain. CATENA 75:129–137.  https://doi.org/10.1016/J.CATENA.2008.04.015 CrossRefGoogle Scholar
  45. Vacondio R, Dal Palù A, Mignosa P (2014) GPU-enhanced finite volume shallow water solver for fast flood simulations. Environ Model Softw 57:60–75.  https://doi.org/10.1016/J.ENVSOFT.2014.02.003 CrossRefGoogle Scholar
  46. Van Den Hurk B, Van Meijgaard E, De Valk P et al (2015) Analysis of a compounding surge and precipitation event in the Netherlands. Environ Res Lett 10(3):035001.  https://doi.org/10.1088/1748-9326/10/3/035001 CrossRefGoogle Scholar
  47. Vapnik VN (1998) Statistical learning theory. Wiley, New YorkGoogle Scholar
  48. Wahl T, Jain S, Bender J et al (2015) Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat Clim Chang 5:1093–1097.  https://doi.org/10.1038/nclimate2736 CrossRefGoogle Scholar
  49. Xu Y, Huang G, Fan Y (2017) Multivariate flood risk analysis for Wei River. Stoch Environ Res Risk Assess 31:225–242.  https://doi.org/10.1007/s00477-015-1196-0 CrossRefGoogle Scholar
  50. Xu H, Xu K, Lian J, Ma C (2019) Compound effects of rainfall and storm tides on coastal flooding risk. Stoch Environ Res Risk Assess 33:1249.  https://doi.org/10.1007/s00477-019-01695-x CrossRefGoogle Scholar
  51. Yaseen ZM, El-shafie A, Jaafar O et al (2015) Artificial intelligence based models for stream-flow forecasting: 2000–2015. J Hydrol 530:829–844CrossRefGoogle Scholar
  52. Zscheischler J, Westra S, van den Hurk BJJM et al (2018) Future climate risk from compound events. Nat Clim Chang 8:469–477.  https://doi.org/10.1038/s41558-018-0156-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Environmental Fluid Dynamics Group, Andalusian Institute for Earth System ResearchUniversity of GranadaGranadaSpain
  2. 2.Environmental and Water Engineering Group, Department of Civil EngineeringUniversity of A CoruñaA CoruñaSpain
  3. 3.Aquática Ingeniería CivilVigoSpain

Personalised recommendations