Parametric variogram matrices incorporating both bounded and unbounded functions

  • Wanfang ChenEmail author
  • Marc G. Genton
Original Paper


We construct a flexible class of parametric models for both traditional and pseudo variogram matrix (valued functions), where the off-diagonal elements are the traditional cross variograms and pseudo cross variograms, respectively, and the diagonal elements are the direct variograms, based on the method of latent dimensions and the linear model of coregionalization. The entries in the parametric variogram matrix allow for a smooth transition between boundedness and unboundedness by changing the values of parameters, and thus between joint second-order and intrinsically stationary vector random fields, or between multivariate geometric Gaussian processes and multivariate Brown–Resnick processes in spatial extreme analysis.


Bounded and unbounded variogram Cross variogram Intrinsic stationarity Second-order stationarity Variogram matrix 



The authors are grateful to Martin Schlather for providing the R code used in Schlather and Moreva (2017), based on which the visuanimations of direct and cross variograms in Movies 1 and 2 in the electronic supplementary material were produced. This research was supported by King Abdullah University of Science and Technology (KAUST).

Supplementary material

477_2019_1710_MOESM1_ESM.pdf (21.1 mb)
Supplementary material 1 (pdf 21594 KB)


  1. Apanasovich TV, Genton MG (2010) Cross-covariance functions for multivariate random fields based on latent dimensions. Biometrika 97(1):15–30Google Scholar
  2. Arroyo D, Emery X (2017) Spectral simulation of vector random fields with stationary gaussian increments in d-dimensional euclidean spaces. Stoch Environ Res Risk Assess 31(7):1583–1592Google Scholar
  3. Bochner S (2005) Harmonic analysis and the theory of probability. Courier Corporation, ChelmsfordGoogle Scholar
  4. Bourgault G, Marcotte D (1991) Multivariable variogram and its application to the linear model of coregionalization. Math Geol 23(7):899–928Google Scholar
  5. Brown BM, Resnick SI (1977) Extreme values of independent stochastic processes. J Appl Probab 14(4):732–739Google Scholar
  6. Chilès JP, Delfiner P (2012) Geostatistics: modeling spatial uncertainty, 2nd edn. Wiley, New YorkGoogle Scholar
  7. Clark I, Basinger K, Harper W (1989) MUCK-a novel approach to co-kriging. In: Buxton BE (ed) Proceedings of the conference on geostatistical, sensitivity, and uncertainty: methods for ground-water flow and radionuclide transport modeling. Batelle Press, Columnbus, pp 473–494Google Scholar
  8. Cressie NA (1991) Statistics for spatial data: Wiley series in probability and mathematical statistics. Wiley, New YorkGoogle Scholar
  9. Cressie N, Wikle CK (1998) The variance-based cross-variogram: you can add apples and oranges. Math Geol 30(7):789–799Google Scholar
  10. Danudirdjo D, Hirose A (2011) Synthesis of two-dimensional fractional Brownian motion via circulant embedding. In: 18th IEEE international conference on image processing, pp 1085–1088Google Scholar
  11. Davison AC, Gholamrezaee MM (2012) Geostatistics of extremes. Proc R Soc A 468(2138):581–608Google Scholar
  12. Emery X (2008) A turning bands program for conditional co-simulation of cross-correlated Gaussian random fields. Comput Geosci 34(12):1850–1862Google Scholar
  13. Genton MG, Kleiber W (2015) Cross-covariance functions for multivariate geostatistics. Stat Sci 30(2):147–163Google Scholar
  14. Genton MG, Castruccio S, Crippa P, Dutta S, Huser R, Sun Y, Vettori S (2015a) Visuanimation in statistics. Stat 4(1):81–96Google Scholar
  15. Genton MG, Padoan SA, Sang H (2015b) Multivariate max-stable spatial processes. Biometrika 102(1):215–230Google Scholar
  16. Huang C, Yao Y, Cressie N, Hsing T (2009) Multivariate intrinsic random functions for cokriging. Math Geosci 41(8):887–904Google Scholar
  17. Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, San DiegoGoogle Scholar
  18. Kabluchko Z, Schlather M (2010) Ergodic properties of max-infinitely divisible processes. Stoch Process Appl 120(3):281–295Google Scholar
  19. Kabluchko Z, Schlather M, de Haan L (2009) Stationary max-stable fields associated to negative definite functions. Ann Probab 37(5):2042–2065Google Scholar
  20. Lantuéjoul C (2002) Geostatistical simulation: models and algorithms. Springer, BerlinGoogle Scholar
  21. Ma C (2005) Linear combinations of space-time covariance functions and variograms. IEEE Trans Signal Process 53(3):857–864Google Scholar
  22. Ma C (2009) Intrinsically stationary variograms in space and time. Theory Probab Appl 53(1):145–155Google Scholar
  23. Ma C (2011a) A class of variogram matrices for vector random fields in space and/or time. Math Geosci 43(2):229–242Google Scholar
  24. Ma C (2011b) Vector random fields with second-order moments or second-order increments. Stoch Anal Appl 29(2):197–215Google Scholar
  25. Maleki M, Emery X (2017) Joint simulation of stationary grade and non-stationary rock type for quantifying geological uncertainty in a copper deposit. Comput Geosci 109:258–267Google Scholar
  26. Matheron G (1963) Principles of geostatistics. Econ Geol 58(8):1246–1266Google Scholar
  27. Matheron G (1965) Les variables régionalisées et leur estimation: une application de la théorie des fonctions aléatoires aux sciences de la nature. Masson et CIEGoogle Scholar
  28. Molchanov I, Stucki K (2013) Stationarity of multivariate particle systems. Stoch Process Appl 123(6):2272–2285Google Scholar
  29. Moreva O, Schlather M (2018) Fast and exact simulation of univariate and bivariate Gaussian random fields. Stat 7(1):e188Google Scholar
  30. Myers DE (1982) Matrix formulation of co-kriging. Math Geol 14(3):249–257Google Scholar
  31. Myers DE (1991) Pseudo-cross variograms, positive-definiteness, and cokriging. Math Geol 23(6):805–816Google Scholar
  32. Myers DE (1992) Kriging, cokriging, radial basis functions and the role of positive definiteness. Comput Math Appl 24(12):139–148Google Scholar
  33. Porcu E, Schilling RL (2011) From Schoenberg to Pick–Nevanlinna: toward a complete picture of the variogram class. Bernoulli 17(1):441–455Google Scholar
  34. Porcu E, Mateu J, Zini A, Pini R (2007) Modelling spatio-temporal data: a new variogram and covariance structure proposal. Stat Probab Lett 77(1):83–89Google Scholar
  35. Schlather M, Moreva O (2017) A parametric model bridging between bounded and unbounded variograms. Stat 6(1):47–52Google Scholar
  36. Schlather M, Tawn JA (2003) A dependence measure for multivariate and spatial extreme values: properties and inference. Biometrika 90(1):139–156Google Scholar
  37. Schoenberg IJ (1938) Metric spaces and completely monotone functions. Ann Math 39:811–841Google Scholar
  38. Stein ML (2002) Fast and exact simulation of fractional Brownian surfaces. J Comput Graph Stat 11(3):587–599Google Scholar
  39. Thibaud E, Mutzner R, Davison AC (2013) Threshold modeling of extreme spatial rainfall. Water Resour Res 49(8):4633–4644Google Scholar
  40. Wackernagel H (1988) Geostatistical techniques for interpreting multivariate spatial information. In: Chung CF, Fabbri AG, Sinding-Larsen R (eds) Quantitative analysis of mineral and energy resources. Springer, Dordrecht, pp 393–409Google Scholar
  41. Wackernagel H (2003) Multivariate geostatistics: an introduction with applications, 3rd edn. Springer, BerlinGoogle Scholar
  42. Wadsworth JL, Tawn JA (2013) Efficient inference for spatial extreme value processes associated to log-Gaussian random functions. Biometrika 101(1):1–15Google Scholar
  43. Wang Y, Stoev SA (2010) On the structure and representations of max-stable processes. Adv Appl Probab 42(3):855–877Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Statistics ProgramKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations