Advertisement

Relationship between Pacific Ocean warming and tropical cyclone activity over the western North Pacific

  • Wanjiao Song
  • Shihao Tang
  • Xin Wang
Original Paper
  • 127 Downloads

Abstract

El Niño has distinctive oceanic and atmospheric signatures that have different influences on tropical cyclone (TC) activity over the western North Pacific (WNP). This study compares TC activity over the WNP basin among strong Central-Pacific (CP), mixed CP, and strong Eastern-Pacific (EP) El Niño. Results suggest that TC activity with strong intensity and long lifespan occurred more frequently during strong (i.e. strong EP and strong CP) El Niño years than during mixed-CP El Niño years. This is attributed primarily to a combined modulation of the amplitude and duration of warm sea-surface temperature anomalies (SSTAs) over the tropical Pacific, and variations in large-scale environmental conditions; i.e. eddy kinetic energy, omega, relative humidity, and vertical wind shear (VWS). During CP (i.e. strong CP and mixed CP) El Niño events, enhanced TC genesis is observed over a large part of the WNP. During strong-CP El Niño events, more TCs are generated east of 140°E in the southwestern WNP, whereas more TCs are generated west of 140°E during mixed-CP El Niño events. This is due to a reduced magnitude of VWS and a westward shift in warm SSTAs over the central equatorial Pacific. When an anomalous anticyclonic circulation over the Indo-China Peninsula is combined with a westward extension of the western North Pacific subtropical high, TCs heading northward are associated with strong mean winds during strong El Niño events, resulting primarily from enhanced eddy kinetic energy, omega, and relative humidity, and weak VWS. Overall, TC activity during the three types of El Niño shows distinct generation locations, evolution patterns, and intensities, and the evolving spatial patterns of SSTA play an important role in modulating TC activity.

Keywords

EP El Niño CP El Niño Mixed CP El Niño Tropical cyclone Western North Pacific 

Notes

Acknowledgements

We thank three anonymous reviewers for very constructive feedback and insights, which significantly improved the manuscript. This project was supported by the National Natural Science Foundation of China (No. 41801355), National Key R&D Program of China (2018YFB0504900, 2018YFB0504905), China Special Fund for Meteorological Research in the Public Interest (No. GYHY201406001), and Key Project of National Natural Science Foundation of China (No. 91338203).

References

  1. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophy Res 112:C11007.  https://doi.org/10.1029/2006JC003798 CrossRefGoogle Scholar
  2. Bister M, Emanuel KA (1998) Dissipative heating and hurricane intensity. Meteorol Atmos Phys 52:233–240.  https://doi.org/10.1175/1520-0493(1999)1272.0.CO;2 CrossRefGoogle Scholar
  3. Boucharel J, Jin FF, Lin II, Huang H, England MH (2016) Different controls of tropical cyclone activity in the Eastern Pacific for two types of El Niño. Geophys Res Lett 43(4):1679–1686.  https://doi.org/10.1002/2016GL067728 CrossRefGoogle Scholar
  4. Camargo SJ, Sobel AH, Barnston AG, Emanuel KA (2007) Tropical cyclone genesis potential index in climate models. Tellus.  https://doi.org/10.1111/j.1600-0870.2007.00238.x CrossRefGoogle Scholar
  5. Chan JCL (2008) Decadal variations of intense typhoon occurrence in the western North Pacific. Proc R Soc A Math Phys Eng Sci 464(2089):249–272.  https://doi.org/10.1098/rspa.2007.0183 CrossRefGoogle Scholar
  6. Chang CWJ, Wang SYS, Hsu HH (2016) Changes in tropical cyclone activity offset the ocean surface warming in northwest Pacific: 1981–2014. Atmos Sci Lett 17(3):251–257.  https://doi.org/10.1002/asl.651 CrossRefGoogle Scholar
  7. Chen GH (2011) How does shifting Pacific Ocean warming modulate on tropical cyclone frequency over the South China Sea? J Clim 24(17):4695–4700.  https://doi.org/10.1175/2011JCLI4140.1 CrossRefGoogle Scholar
  8. Chen GH, Tam CY (2010) Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys Res Lett 37(1):L1803.  https://doi.org/10.1029/2009GL041708 CrossRefGoogle Scholar
  9. Chiodi AM, Harrison DE (2013) El Niño impacts on seasonal U.S. atmospheric circulation, temperature, and precipitation anomalies: the OLR-event perspective. J Clim 26(3):822–837.  https://doi.org/10.1175/JCLI-D-12-00097.1 CrossRefGoogle Scholar
  10. Craig GC, Gray SL (1996) CISK or WISHE as the mechanism for tropical cyclone intensification. J Atmos Sci 53(23):3528–3540.  https://doi.org/10.1175/1520-0469(1996)053<3528:COWATM>2.0.CO;2 CrossRefGoogle Scholar
  11. Curtis S, Adler R (2000) ENSO indices based on patterns of satellite-derived precipitation. J Clim 13(15):2786–2793.  https://doi.org/10.1175/1520-0442(2000)013<2786:EIBOPO>2.0.CO;2 CrossRefGoogle Scholar
  12. Demaria M (1996) The effect of vertical shear on tropical cyclone intensity change. J Atmos Sci 53(14):2076–2087.  https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2 CrossRefGoogle Scholar
  13. Di Lorenzo E, Cobb KM, Furtado JC, Schneider N, Anderson BT, Bracco A, Alexander MA, Vimont DJ (2010) Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat Geosci 3(11):762–765.  https://doi.org/10.1038/ngeo984 CrossRefGoogle Scholar
  14. Emanuel KA (1988) The maximum intensity of hurricanes. J Atmos Sci 45(7):1143–1155.  https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2 CrossRefGoogle Scholar
  15. Emanuel KA, Nolan DS (2004) Tropical cyclone activity and global climate. Bull Am Meteorol Soc 85(5):666–667Google Scholar
  16. Gray WM (1998) The formation of tropical cyclones. Meteorol Atmos Phys 67(1):37–69.  https://doi.org/10.1007/BF01277501 CrossRefGoogle Scholar
  17. Ha Y, Zhong Z, Yang XQ, Sun Y (2013) Different Pacific Ocean warming decaying types and Northwest Pacific tropical cyclone activity. J Clim.  https://doi.org/10.1175/JCLI-D-13-00097.1 CrossRefGoogle Scholar
  18. Harr PA, Elsberry RL (1991) Tropical cyclone track characteristics as a function of large-scale circulation anomalies. Mon Weather Rev 119(6):1448–1468.  https://doi.org/10.1175/1520-0493(1991)119<1448:TCTCAA>2.0.CO;2 CrossRefGoogle Scholar
  19. Harr PA, Elsberry RL (1995) Large-scale circulation variability over the tropical western North Pacific. Part II: persistence and transition characteristics. Mon Weather Rev 123(5):1225–1246.  https://doi.org/10.1175/1520-0493(1995)123<1247:LSCVOT>2.0.CO;2 CrossRefGoogle Scholar
  20. He H, Yang J, Wu L, Gong D, Wang B (2017) Unusual growth in intense typhoon occurrences over the Philippine Sea in September after the mid-2000s. Clim Dyn 48(5–6):1893–1910.  https://doi.org/10.1007/s00382-016-3181-9 CrossRefGoogle Scholar
  21. Hong CC, Li YH, Li T, Lee MY (2011) Impacts of central Pacific and eastern Pacific El Niños on tropical cyclone tracks over the western North Pacific. Geophys Res Lett 38(16):L16712.  https://doi.org/10.1029/2011GL048821 CrossRefGoogle Scholar
  22. Hong CC, Wu YK, Li T (2016) Influence of climate regime shift on the interdecadal change in tropical cyclone activity over the Pacific Basin during the middle to late 1990s. Clim Dyn 47(7–8):2587–2600.  https://doi.org/10.1007/s00382-016-2986-x CrossRefGoogle Scholar
  23. Jin CS, Ho CH, Kim JH, Lee DK, Cha DH, Yeh SW (2013) Critical role of northern off-equatorial sea surface temperature forcing associated with central Pacific El Niño in more frequent tropical cyclone movements toward East Asia. J Clim 26(8):2534–2545.  https://doi.org/10.1175/JCLI-D-12-00287.1 CrossRefGoogle Scholar
  24. Jin FF, Boucharel J, Lin II (2014) Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat. Nature 516(7529):82–178.  https://doi.org/10.1038/nature13958 CrossRefGoogle Scholar
  25. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471.  https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  26. Kao H, Yu J (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim 22(3):615–632.  https://doi.org/10.1175/2008JCLI2309.1 CrossRefGoogle Scholar
  27. Kaplan J, Demaria M (2003) Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Weather Forecast 18(6):1093–1108.  https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2 CrossRefGoogle Scholar
  28. Kim JH, Ho CH, Sui CH, Park SK (2005) Dipole structure of interannual variations in summertime tropical cyclone activity over east Asia. J Clim 18(24):5344–5356.  https://doi.org/10.1175/JCLI3601.1 CrossRefGoogle Scholar
  29. Kim JS, Kim ST, Wang L, Wang X, Moon YI (2016) Tropical cyclone activity in the northwestern Pacific associated with decaying Central Pacific El Niños. Stoch Environ Res Risk Assess 30:1335–1345.  https://doi.org/10.1007/s00477-016-1256-0 CrossRefGoogle Scholar
  30. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22(6):1499–1515.  https://doi.org/10.1175/2008JCLI2624.1 CrossRefGoogle Scholar
  31. Kurihara Y (1976) On the development of spiral bands in a tropical cyclone. J Atmos Sci 33(6):940–958.  https://doi.org/10.1175/1520-0469(1976)033<0940:OTDOSB>2.0.CO;2 CrossRefGoogle Scholar
  32. Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32(16):L6705.  https://doi.org/10.1029/2005GL022860 CrossRefGoogle Scholar
  33. Lau KM, Chan PH (1986) Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon Weather Rev 114(7):1354–1367.  https://doi.org/10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2 CrossRefGoogle Scholar
  34. Lau KH, Lau NC (1992) The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. Mon Weather Rev 120(11):2523.  https://doi.org/10.1175/1520-0493(1992)120<2523:TEAPDO>2.0.CO;2 CrossRefGoogle Scholar
  35. Li G, Ren B, Yang C, Zheng J (2010a) Indices of El Niño and El Niño Modoki: an improved El Niño Modoki index. Adv Atmos Sci 27(5):1210–1220.  https://doi.org/10.1007/s00376-010-9173-5 CrossRefGoogle Scholar
  36. Li WB, Du QB, Chen SM (2010b) Climatological relationships among the tropical cyclone frequency, duration, intensity and activity regions over the Western Pacific. Chin Sci Bull 55(33):3818–3824.  https://doi.org/10.1007/s11434-010-4168-2 CrossRefGoogle Scholar
  37. Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77(6):1275–1277Google Scholar
  38. Maloney ED, Hartmann DL (2000) The Madden–Julian oscillation, barotropic dynamics, and eastern Pacific hurricanes, Part I observations. J Atmos Sci 58:2545–2558.  https://doi.org/10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2 CrossRefGoogle Scholar
  39. Moon IJ, Kim SH, Wang CZ (2015) El Niño and intense tropical cyclones. Nature 526(7575):E4–E5.  https://doi.org/10.1038/nature13958 CrossRefGoogle Scholar
  40. Murakami H, Wang B, Kitoh A (2011) Future change of Western North Pacific typhoons: projections by a 20-km-mesh global atmospheric model. J Clim 24(4):1154–1169.  https://doi.org/10.1175/2010JCLI3723.1 CrossRefGoogle Scholar
  41. Qu T, Yu J (2014) ENSO indices from sea surface salinity observed by Aquarius and Argo. J Oceanogr 70(4):367–375.  https://doi.org/10.1007/s10872-014-0238-4 CrossRefGoogle Scholar
  42. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108(D14):4407.  https://doi.org/10.1029/2002JD002670 CrossRefGoogle Scholar
  43. Ren HL, Jin FF (2011) Niño indices for two types of ENSO. Geophys Res Lett 38:L4704.  https://doi.org/10.1029/2010GL046031 CrossRefGoogle Scholar
  44. Seiki A, Takayabu YN (2007) Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: statistics. Mon Weather Rev 135(10):3325–3345.  https://doi.org/10.1175/MWR3477.1 CrossRefGoogle Scholar
  45. Shapiro LJ (1978) The vorticity budget of a composite African tropical wave disturbance. Mon Weather Rev 106:806–817.  https://doi.org/10.1175/1520-0493(1978)106<0806:tvboac>2.0.co;2 CrossRefGoogle Scholar
  46. Son C, Kim J, Moon Y, Lee J (2014) Characteristics of tropical cyclone-induced precipitation over the Korean River basins according to three evolution patterns of the Central-Pacific El Niño. Stoch Environ Res Risk Assess 28:1147–1156.  https://doi.org/10.1007/s00477-013-0804-0 CrossRefGoogle Scholar
  47. Song WJ, Dong Q, Xue CJ (2016a) A classified El Niño index using AVHRR remote-sensing SST data. Int J Remote Sens 37(2):403–417.  https://doi.org/10.1080/01431161.2015.1125553 CrossRefGoogle Scholar
  48. Song WJ, Dong Q, Xue CJ, Sha J (2016b) Two types of El Niño and extratropical sea-level pressure variations. Int J Remote Sens 37(22):5443–5456.  https://doi.org/10.1080/01431161.2016.1232872 CrossRefGoogle Scholar
  49. Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38(L10704):L10704.  https://doi.org/10.1029/2011GL047364 CrossRefGoogle Scholar
  50. Wang B, Chan JCL (2002) How strong ENSO events affect tropical storm activity over the Western North Pacific. J Clim 15(13):1643–1658.  https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2 CrossRefGoogle Scholar
  51. Wang CZ, Li CX, Mu M, Duan WS (2013) Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific. Clim Dyn 40(11–12):2887–2902.  https://doi.org/10.1007/s00382-012-1434-9 CrossRefGoogle Scholar
  52. Wang X, Han S, Dong X, Wang YJ (2018a) The influence of two kinds of El Niño events on the strong tropical cyclone generation and strength in the Pacific Ocean. J Ocean Univ China 17(5):1011–1018.  https://doi.org/10.1007/s11802-018-3560-4 CrossRefGoogle Scholar
  53. Wang X, Tan W, Wang C (2018b) A new index for identifying different types of El Niño Modoki events. Clim Dyn 50(7–8):2753–2765.  https://doi.org/10.1007/s00382-017-3769-8 CrossRefGoogle Scholar
  54. Wolter K, Timlin MS (2011) El Niño/Southern oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int J Climatol 31(7):1074–1087.  https://doi.org/10.1002/joc.2336 CrossRefGoogle Scholar
  55. Xiang BQ, Wang B, Li T (2013) A new paradigm for the predominance of standing Central Pacific warming after the late 1990s. Clim Dyn 41(2):327–340.  https://doi.org/10.1007/s00382-012-1427-8 CrossRefGoogle Scholar
  56. Xu SB, Huang F (2015) Impacts of the two types of El Nio on Pacific tropical cyclone activity. J Ocean Univ China 14(2):191–198.  https://doi.org/10.1007/s11802-015-2421-7 CrossRefGoogle Scholar
  57. Yang L, Du Y, Wang DX, Wang CZ, Wang X (2015) Impact of intraseasonal oscillation on the tropical cyclone track in the South China Sea. Clim Dyn 44(5–6):1505–1519.  https://doi.org/10.1007/s00382-014-2180-y CrossRefGoogle Scholar
  58. Yang YX, Xie RH, Wang FM, Huang F (2016) Impacts of decaying eastern and central Pacific El Niños on tropical cyclone activities over the western North Pacific in summer. Theor Appl Climatol 125(1–2):175–185.  https://doi.org/10.1007/s00704-015-1471-5 CrossRefGoogle Scholar
  59. Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461(7263):511–514.  https://doi.org/10.1038/nature08316 CrossRefGoogle Scholar
  60. Yu JY, Kao HY (2007) Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J Geophy Res Atmos 112(D13):D13106.  https://doi.org/10.1029/2006JD007654 CrossRefGoogle Scholar
  61. Yu JY, Kim ST (2010) Three evolution patterns of Central-Pacific El Niño. Geophys Res Lett 37(8):L8706.  https://doi.org/10.1029/2010GL042810 CrossRefGoogle Scholar
  62. Yu JY, Kim ST (2013) Identifying the types of major El Niño events since 1870. Int J Climatol 33(8):2105–2112.  https://doi.org/10.1002/joc.3575 CrossRefGoogle Scholar
  63. Yu JY, Kao HY, Lee T, Kim ST (2011) Subsurface ocean temperature indices for Central-Pacific and Eastern-Pacific types of El Niño and La Niña events. Theor Appl Climatol 103(3–4):337–344.  https://doi.org/10.1007/s00704-010-0307-6 CrossRefGoogle Scholar
  64. Zhang W, Leung Y, Fraedrich K (2015) Different El Niño types and intense typhoons in the Western North Pacific. Clim Dyn 44(11):2965–2977.  https://doi.org/10.1007/s00382-014-2446-4 CrossRefGoogle Scholar
  65. Zhao HK (2016) A downscaling technique to simulate changes in western North Pacific tropical cyclone activity between two types of El Niño events. Theor Appl Climatol 123(3–4):487–501.  https://doi.org/10.1007/s00704-015-1374-5 CrossRefGoogle Scholar
  66. Zhao HK, Wang CZ (2015) Interdecadal modulation on the relationship between ENSO and typhoon activity during the late season in the Western North Pacific. Clim Dyn 47(1–2):1–14.  https://doi.org/10.1007/s00382-015-2837-1 CrossRefGoogle Scholar
  67. Zhao JW, Zhan RF, Wang YQ, Tao L (2016) Intensified interannual relationship between tropical cyclone genesis frequency over the Northwest Pacific and the SST gradient between the Southwest Pacific and the Western Pacific warm pool since the mid-1970s. J Clim 29(10):3811–3830.  https://doi.org/10.1175/JCLI-D-15-0729.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Satellite Meteorological CenterChina Meteorological AdministrationBeijingChina

Personalised recommendations