Estimation of intensity–duration–frequency curves using max-stable processes
- 147 Downloads
Abstract
We present an approach to estimate intensity–duration–frequency (IDF) curves based on max-stable processes. The proposed method has been inspired by the seminal study of Nadarajah et al. (J R Stat Soc B 60(2):473–496, 1998), who used a multivariate extreme value distribution (MEVD) to estimate (IDF) curves from rainfall records. Max-stable processes are continuous extensions of MEVD (i.e. the marginal distributions of rainfall maxima at different durations are generalized extreme valued), which are more flexible, allow for extreme rainfall estimation at any arbitrary duration d (i.e. not just a discrete set, as is the case of MEVD), while preserving asymptotic dependencies. The latter characteristic of IDF estimates results from the combined effect of the statistical structure of rainfall (i.e. temporal dependencies), as well as the IDF construction process, which involves averaging of the original series to obtain rainfall maxima at different temporal resolutions. We apply the method to hourly precipitation data, and compare it to empirical estimates and the results produced by a semiparametric approach. Our findings indicate that max-stable processes fit well the statistical structure and inter-dependencies of annual rainfall maxima at different durations, produce slightly more conservative estimates relative to semiparametric methods, while allowing for extrapolations to durations and return periods beyond the range of the available data. The proposed statistical model is fully parametric and likelihood based, providing a theoretically consistent basis in solving the problem at hand.
Keywords
Brown–Resnick process Generalized extreme value distribution Max-stable processes Multivariate extreme value distribution Pairwise likelihood Rainfall maximaNotes
Acknowledgements
We thank two anonymous reviewers for their useful suggestions.
Compliance with ethical standards
Conflicts of interest
The authors declare that they have no conflict of interest.
Supplementary material
References
- Ahrens B (2003) Rainfall downscaling in an alpine watershed applying a multiresolution approach. J Geophys Res 108(D8):8388. https://doi.org/10.1029/2001JD001485 Google Scholar
- Asadi P, Davison AC, Engelke S (2015) Extremes on river networks. Ann Appl Stat 9(4):2023–2050. https://doi.org/10.1214/15-AOAS863 Google Scholar
- Balcerak E (2013) Improving estimates of extreme snowfalls in a spatial context. EOS Trans AGU 94(14):140. https://doi.org/10.1002/2013EO140007 Google Scholar
- Bernard MM (1932) Formulas for rainfall intensities of long durations. T Am Soc Civ Eng 96:592–624Google Scholar
- Blanchet J, Creutin JD (2017) Co-occurrence of extreme daily rainfall in the French mediterranean region. Water Resour Res 53(11):9330–9349. https://doi.org/10.1002/2017WR020717 Google Scholar
- Blanchet J, Ceresetti D, Molinié G, Creutin JD (2016) A regional GEV scale-invariant framework for intensity–duration–frequency analysis. J Hydrol 540:82–95. https://doi.org/10.1016/j.jhydrol.2016.06.007 Google Scholar
- Brown BM, Resnick SI (1977) Extreme values of independent stochastic processes. J Appl Probab 14(4):732–739. https://doi.org/10.1017/S0021900200105261 Google Scholar
- Castruccio S, Huser R, Genton MG (2016) High-order composite likelihood inference for max-stable distributions and processes. J Comput Graph Stat 25(4):1212–1229. https://doi.org/10.1080/10618600.2015.1086656 Google Scholar
- Chan RKS, So MKP (2017) On the performance of the Bayesian composite likelihood estimation of max-stable processes. J Stat Comput Sim 87(15):2869–2881. https://doi.org/10.1080/00949655.2017.1342824 Google Scholar
- Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. McGraw-Hill, New YorkGoogle Scholar
- Coles GS (2001) An introduction to statistical modeling of extreme values. Springer, New York. https://doi.org/10.1007/978-1-4471-3675-0 Google Scholar
- Coles SG, Heffernan J, Tawn J (1999) Dependence measures for extreme value analyses. Extremes 2(4):339–365. https://doi.org/10.1023/A:1009963131610 Google Scholar
- Cooley D, Naveau P, Poncet P (2006) Variograms for spatial max-stable random fields. In: Bertail P, Doukhan P, Soulier P (eds) Dependence in probability and statistics. Springer, New York, pp 373–390. https://doi.org/10.1007/0-387-36062-X_17 Google Scholar
- Cooley D, Cisewski J, Erhardt RJ, Jeon S, Mannshardt E, Omolo BO, Sun Y (2012) A survey of spatial extremes: measuring spatial dependence and modeling spatial effects. Revstat-Stat J 10(1):135–165Google Scholar
- Cowpertwait PSP (1995) A generalized spatial-temporal model of rainfall based on a clustered point process. Proc R Soc A 450:163–175. https://doi.org/10.1098/rspa.1995.0077 Google Scholar
- Cowpertwait PSP (1998) A poisson-cluster model of rainfall: high-order moments and extreme values. Proc R Soc A 454:885–898. https://doi.org/10.1098/rspa.1998.0191 Google Scholar
- Davison AC, Gholamrezaee MM (2011) Geostatistics of extremes. Proc R Soc A. https://doi.org/10.1098/rspa.2011.0412
- Davison AC, Huser R (2015) Statistics of extremes. Annu Rev Stat Appl 2:203–235. https://doi.org/10.1146/annurev-statistics-010814-020133 Google Scholar
- Davison AC, Padoan SA, Ribatet M (2012) Statistical modeling of spatial extremes. Stat Sci 27(2):161–186. https://doi.org/10.1214/11-STS376 Google Scholar
- Davison AC, Huser R, Thibaud E (2013) Geostatistics of dependent and asymptotically independent extremes. Math Geosci 45(5):511–529. https://doi.org/10.1007/s11004-013-9469-y Google Scholar
- De Haan L (1984) A spectral representation for max-stable processes. Ann Probab 12(4):1194–1204. https://doi.org/10.1214/aop/1176993148 Google Scholar
- Deidda R (2000) Rainfall downscaling in a space-time multifractal framework. Water Resour Res 36(7):1779–1794. https://doi.org/10.1029/2000WR900038 Google Scholar
- Dey D, Roy D, Yan J (2016) Univariate extreme value analysis. In: Dey DK, Yan J (eds) Extreme value modeling and risk analysis, methods and applications. CRC Press, Boca Raton, pp 1–22Google Scholar
- Dombry C, Genton MG, Huser R, Ribatet M (2017) Full likelihood inference for max-stable data. arXiv:1703.08665v1
- Dowle M, Srinivasan A, Gorecki J, Short T, Lianoglou S, Antonyan E (2017) data.table: Extension of ‘data.frame’. R package version 1.10.4-3. https://CRAN.R-project.org/package=data.table
- Eagleson PS (1970) Dynamic hydrology. McGraw-Hill, New YorkGoogle Scholar
- El Adlouni S, Ouarda TBMJ (2010) Frequency analysis of extreme rainfall events. In: Testik FY, Gebremichael M (eds) Rainfall: state of the science, vol 191. AGU, Washington, DC, pp 171–188. https://doi.org/10.1029/2010GM000976 Google Scholar
- El Adlouni S, Ouarda TBMJ, Zhang X, Roy R, Bobée B (2007) Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour Res 43(3):W03410. https://doi.org/10.1029/2005WR004545 Google Scholar
- Entekhabi D, Rodriguez-Iturbe I, Eagleson PS (1989) Probabilistic representation of the temporal rainfall process by the modified Neyman–Scott rectangular pulses model: parameter estimation and validation. Water Resour Res 25(2):295–302. https://doi.org/10.1029/WR025i002p00295 Google Scholar
- Fawcett L, Walshaw D (2013) Estimating the probability of simultaneous rainfall extremes within a region: a spatial approach. J Appl Stat 41(5):959–976. https://doi.org/10.1080/02664763.2013.856872 Google Scholar
- Foufoula-Georgiou E, Lettenmaier DP (1986) Continuous-time versus discrete-time point process models for rainfall occurrence series. Water Resour Res 22(4):531–542. https://doi.org/10.1029/WR022i004p00531 Google Scholar
- Gaume J, Eckert N, Chambon G, Naaim M, Bel L (2013) Mapping extreme snowfalls in the French Alps using max-stable processes. Water Resour Res 49(2):1079–1098. https://doi.org/10.1002/wrcr.20083 Google Scholar
- Genton MG, Ma Y, Sang H (2011) On the likelihood function of Gaussian max-stable processes. Biometrika 98(2):481–488. https://doi.org/10.1093/biomet/asr020 Google Scholar
- Gilleland E (2016) extRemes: Extreme value analysis. R package version 2.0-8. https://CRAN.R-project.org/package=extRemes
- Gilleland E, Katz RW (2016) extRemes 2.0: an extreme value analysis package in R. J Stat Softw 72(8):1–39. https://doi.org/10.18637/jss.v072.i08 Google Scholar
- Gomes DP, Neves MM (2015) Exploring R for modeling spatial extreme precipitation data. AIP Conf Proc 1618(1):547–550. https://doi.org/10.1063/1.4897796 Google Scholar
- Gomes DP, Neves MM, Moreira E (2016) An exploratory study of spatial annual maximum of monthly precipitation in the northern region of Portugal. Phys Chem Earth 94:77–84. https://doi.org/10.1016/j.pce.2015.12.001 Google Scholar
- Grolemund G, Wickham H (2011) Dates and times made easy with lubridate. J Stat Softw 40(3):1–25. https://doi.org/10.18637/jss.v040.i03 Google Scholar
- Güntner A, Olsson J, Calver A, Gannon B (2001) Cascade-based disaggregation of continuous rainfall time series: the influence of climate. Hydrol Earth Syst Sci 5:145–164. https://doi.org/10.5194/hess-5-145-2001 Google Scholar
- Hao Z, Singh VP (2016) Review of dependence modeling in hydrology and water resources. Prog Phys Geog 40(4):549–578. https://doi.org/10.1177/0309133316632460 Google Scholar
- Huser R, Davison AC (2013) Composite likelihood estimation for the Brown–Resnick process. Biometrika 100(2):511–518. https://doi.org/10.1093/biomet/ass089 Google Scholar
- Huser R, Wadsworth JL (2018) Modeling spatial processes with unknown extremal dependence class. J Am Stat Assoc. https://doi.org/10.1080/01621459.2017.1411813 Google Scholar
- Innocenti S, Mailhot A, Frigon A (2017) Simple scaling of extreme precipitation in North America. Hydrol Earth Syst Sci 21:5823–5846. https://doi.org/10.5194/hess-21-5823-2017 Google Scholar
- Koutsoyiannis D, Langousis A (2011) 2.02-Precipitation. In: Wilderer P, Uhlenbrook S (eds) Treatise on water science. Academic Press, Oxford, pp 27–77. https://doi.org/10.1016/B978-0-444-53199-5.00027-0 Google Scholar
- Koutsoyiannis D, Kozonis D, Manetas A (1998) A mathematical framework for studying rainfall intensity–duration–frequency relationships. J Hydrol 206(1–2):118–135. https://doi.org/10.1016/S0022-1694(98)00097-3 Google Scholar
- Langousis A, Veneziano D (2007) Intensity–duration–frequency curves from scaling representations of rainfall. Water Resour Res 43(2):W02422. https://doi.org/10.1029/2006WR005245 Google Scholar
- Langousis A, Veneziano D, Furcolo P, Lepore C (2009) Multifractal rainfall extremes: theoretical analysis and practical estimation. Chaos Soliton Fract 39(3):1182–1194. https://doi.org/10.1016/j.chaos.2007.06.004 Google Scholar
- Langousis A, Carsteanu AA, Deidda R (2013) A simple approximation to multifractal rainfall maxima using a generalized extreme value distribution model. Stoch Environ Res Risk Assess 27(6):1525–1531. https://doi.org/10.1007/s00477-013-0687-0 Google Scholar
- Langousis A, Mamalakis A, Puliga M, Deidda R (2016) Threshold detection for the generalized Pareto distribution: review of representative methods and application to the NOAA NCDC daily rainfall database. Water Resour Res 52(4):2659–2681. https://doi.org/10.1002/2015WR018502 Google Scholar
- LeCam L (1961) A stochastic description of precipitation. In: Neyman J (ed) Proceedings of fourth Berkeley symposium on mathematical statistics and probability, vol 3. University of California Press, Berkeley, pp 165–176Google Scholar
- Lee Y, Yoon S, Murshed MS, Kim MK, Cho CH, Baek HJ, Park JS (2013) Spatial modeling of the highest daily maximum temperature in Korea via max-stable processes. Adv Atmos Sci 30(6):1608–1620. https://doi.org/10.1007/s00376-013-2216-y Google Scholar
- Lovejoy S, Schertzer D (1995) Multifractals and rain. In: Kundzewicz AW (ed) New uncertainty concepts in hydrology and hydrological modelling. Cambridge University Press, Cambridge, pp 61–103. https://doi.org/10.1017/CBO9780511564482.009 Google Scholar
- Lucarini V, Faranda D, de Freitas ACGMM, de Freitas JMM, Holland M, Kuna T, Nicol M, Todd M, Vaienti S (2016) Extremes and recurrence in dynamical systems. Wiley, HobokenGoogle Scholar
- Mélèse V, Blanchet J, Molinié G (2018) Uncertainty estimation of intensity–duration–frequency relationships: a regional analysis. J Hydrol 558:579–591. https://doi.org/10.1016/j.jhydrol.2017.07.054 Google Scholar
- Menabde M, Sivapalan M (2000) Modelling of rainfall time series and extremes using bounded random cascades and Levy-stable distributions. Water Resour Res 36(11):3293–3300. https://doi.org/10.1029/2000WR900197 Google Scholar
- Menabde M, Harris D, Seed A, Austin G, Stow D (1997) Multiscaling properties of rainfall and bounded random cascades. Water Resour Res 33(12):2823–2830. https://doi.org/10.1029/97WR02006 Google Scholar
- Muller A, Bacro JN, Lang M (2008) Bayesian comparison of different rainfall depth–duration–frequency relationships. Stoch Environ Res Risk Assess 22(1):33–46. https://doi.org/10.1007/s00477-006-0095-9 Google Scholar
- Nadarajah S, Anderson CW, Tawn JA (1998) Ordered multivariate extremes. J R Stat Soc B 60(2):473–496. https://doi.org/10.1111/1467-9868.00136 Google Scholar
- Neves M, Gomes DP (2011) Geostatistics for spatial extremes. A case study of maximum annual rainfall in Portugal. Proc Environ Sci 7:246–251. https://doi.org/10.1016/j.proenv.2011.07.043 Google Scholar
- Nicolet G, Eckert N, Morin S, Blanchet J (2015) Inferring spatio-temporal patterns in extreme snowfall in the French Alps using max-stable processes. Proc Environ Sci 26:24–31. https://doi.org/10.1016/j.proenv.2015.05.018 Google Scholar
- Nicolet G, Eckert N, Morin S, Blanchet J (2016) Decreasing spatial dependence in extreme snowfall in the French Alps since 1958 under climate change. J Geophys Res 121(14):8297–8310. https://doi.org/10.1002/2016JD025427 Google Scholar
- Nicolet G, Eckert N, Morin S, Blanchet J (2017) A multi-criteria leave-two-out cross-validation procedure for max-stable process selection. Spat Stat 22(Part 1):107–128. https://doi.org/10.1016/j.spasta.2017.09.004 Google Scholar
- Nikoloulopoulos AK, Joe H, Li H (2009) Extreme value properties of multivariate t copulas. Extremes 12(2):129–148. https://doi.org/10.1007/s10687-008-0072-4 Google Scholar
- NOAA National Centers for Environmental Information (2017) Hourly precipitation data (HPD) network, version 1.0 Beta. ftp://ftp.ncdc.noaa.gov/pub/data/hpd/auto/v1/beta/. Accessed 2 Dec. 2017
- Oesting M, Stein A (2018) Spatial modeling of drought events using max-stable processes. Stoch Environ Res Risk Assess 32(1):63–81. https://doi.org/10.1007/s00477-017-1406-z Google Scholar
- Oesting M, Schlather M, Friederichs P (2017) Statistical post-processing of forecasts for extremes using bivariate Brown–Resnick processes with an application to wind gusts. Extremes 20(2):309–332. https://doi.org/10.1007/s10687-016-0277-x Google Scholar
- Olinda RA, Blanchet J, dos Santos CAC, Ozaki VA, Ribeiro PJ Jr (2014) Spatial extremes modeling applied to extreme precipitation data in the state of Paraná. Hydrol Earth Syst Sci Discuss 11:12731–12764. https://doi.org/10.5194/hessd-11-12731-2014 Google Scholar
- Olsson J (1998) Evaluation of a scaling cascade model for temporal rainfall disaggregation. Hydrol Earth Syst Sci 2:19–30. https://doi.org/10.5194/hess-2-19-1998 Google Scholar
- Onibon H, Ouarda TBMJ, Barbet M, ST-Hilaire A, Bobée B, Bruneau P (2004) Regional frequency analysis of annual maximum daily precipitation in Quebec, Canada. Hydrolog Sci J 49(4):717–735. https://doi.org/10.1623/hysj.49.4.717.54421 Google Scholar
- Onof C, Arnbjerg-Nielsen K (2009) Quantification of anticipated future changes in high resolution design rainfall for urban areas. Atmos Res 92(3):350–363. https://doi.org/10.1016/j.atmosres.2009.01.014 Google Scholar
- Onof C, Wheater HS (1993) Modelling of British rainfall using a random parameter Bartlett–Lewis rectangular pulse model. J Hydrol 149:67–95. https://doi.org/10.1016/0022-1694(93)90100-N Google Scholar
- Onof C, Wheater HS (1994) Improvements to the modeling of British rainfall using a modified random parameter Bartlett–Lewis rectangular pulses model. J Hydrol 157:177–195. https://doi.org/10.1016/0022-1694(94)90104-X Google Scholar
- Onof C, Chandler RE, Kakou A, Northrop P, Wheater HS, Isham V (2000) Rainfall modelling using poisson-cluster processes: a review of developments. Stoch Environ Res Risk Assess 14:384–411. https://doi.org/10.1007/s004770000043 Google Scholar
- Opitz T (2013) Extremal t processes: elliptical domain of attraction and a spectral representation. J Multivar Anal 122:409–413. https://doi.org/10.1016/j.jmva.2013.08.008 Google Scholar
- Padoan SA (2013) Extreme dependence models based on event magnitude. J Multivar Anal 122:1–19. https://doi.org/10.1016/j.jmva.2013.07.009 Google Scholar
- Padoan SA, Ribatet M, Sisson SA (2010) Likelihood-based inference for max-stable processes. J Am Stat Assoc 105(489):263–277. https://doi.org/10.1198/jasa.2009.tm08577 Google Scholar
- Papoulis A (1991) Probability, random variables, and stochastic processes, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
- Paulson KS, Baxter PD (2007) Downscaling of rain gauge time series by multiplicative beta cascade. J Geophys Res. https://doi.org/10.1029/2006JD007333 Google Scholar
- Perica S, Foufoula-Georgiou E (1996) Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions. J Geophys Res 101(D21):26347–26361. https://doi.org/10.1029/96JD01870 Google Scholar
- Raudkivi AJ (1979) Hydrology, an advanced introduction to hydrological processes and modelling. Pergamon Press, OxfordGoogle Scholar
- Reiss RD, Thomas M (2007) Statistical analysis of extreme values. Birkhäuser, Basel. https://doi.org/10.1007/978-3-7643-7399-3 Google Scholar
- Ribatet M (2013) Spatial extremes: max-stable processes at work. J Soc Fr Stat 154(2):156–177Google Scholar
- Ribatet M, Sedki M (2013) Extreme value copulas and max-stable processes. J Soc Fr Stat 154(1):138–150Google Scholar
- Ribatet M, Singleton R (2018) SpatialExtremes: modelling spatial extremes. R package version 2.0-6. https://CRAN.R-project.org/package=SpatialExtremes
- Ribatet M, Cooley D, Davison AC (2012) Bayesian inference from composite likelihoods, with an application to spatial extremes. Stat Sin 22(2):813–845. https://doi.org/10.5705/ss.2009.248 Google Scholar
- Ribatet M, Dombry C, Oesting M (2016) Spatial extremes and max-stable processes. In: Dey DK, Yan J (eds) Extreme value modeling and risk analysis, methods and applications. CRC Press, Boca Raton, pp 179–194Google Scholar
- Rodriguez-Iturbe I, Cox DR, Isham V (1987) Some models for rainfall based on stochastic point processes. Proc R Soc A 410:269–298. https://doi.org/10.1098/rspa.1987.0039 Google Scholar
- Rodriguez-Iturbe I, Cox DR, Isham V (1988) A point process model for rainfall: further developments. Proc R Soc A 417:283–298. https://doi.org/10.1098/rspa.1988.0061 Google Scholar
- Rossi F, Villani P (1994) A project for regional analysis of floods in Italy. In: Rossi G, Harmancioglu N, Yevjevich V (eds) Coping with floods. NATO ASI series. Kluwer Academic Publishers, DordrechtGoogle Scholar
- Salas JD (1993) Analysis and modeling of hydrologic time series. In: Maidment D (ed) Handbook of hydrology, Chapter 19. McGraw-Hill, New YorkGoogle Scholar
- Saunders K, Stephenson AG, Taylor PG, Karoly D (2017) The spatial distribution of rainfall extremes and the influence of El Niño Southern Oscillation. Weather Clim Extrem 18:17–28. https://doi.org/10.1016/j.wace.2017.10.001 Google Scholar
- Schertzer D, Lovejoy S (1987) Physical modeling and analysis of rain and clouds by anisotropic scaling of multiplicative processes. J Geophys Res 92:9693–9714. https://doi.org/10.1029/JD092iD08p09693 Google Scholar
- Schlather M (2002) Models for stationary max-stable random fields. Extremes 5(1):33–44. https://doi.org/10.1023/A:1020977924878 Google Scholar
- Schlather M, Tawn JA (2003) A dependence measure for multivariate and spatial extreme values: properties and inference. Biometrika 90(1):139–156. https://doi.org/10.1093/biomet/90.1.139 Google Scholar
- Sebille Q, Fougères AL, Mercadier C (2017) Modeling extreme rainfall. A comparative study of spatial extreme value models. Spat Stat 21(A):187–208. https://doi.org/10.1016/j.spasta.2017.06.009 Google Scholar
- Segers J (2012) Max-stable models for multivariate extremes. Revstat-Stat J 10(1):61–82Google Scholar
- Segond ML, Neokleous N, Makropoulos C, Onof C, Maksimovic C (2007) Simulation and spatial–temporal disaggregation of multi-site rainfall data for urban drainage applications. Hydrolog Sci J 52(5):917–935. https://doi.org/10.1623/hysj.52.5.917 Google Scholar
- Shaw EM (1983) Hydrology in practice. Van Nostrand Reinhold, BerkhireGoogle Scholar
- Sherman CW (1931) Frequency and intensity of excessive rainfall at Boston. T Am Soc Civ Eng 95:951–960Google Scholar
- Singh VP (1992) Elementary hydrology. Prentice-Hall, New JerseyGoogle Scholar
- Smith RL (1990) Max-stable processes and spatial extremes. https://pdfs.semanticscholar.org/033b/fb040b67dbe584a62ae900ad537f5f0eef0b.pdf. Accessed 2 Dec. 2017
- Stephenson AG, Shaby BA, Reich BJ, Sullivan AL (2015) Estimating spatially varying severity thresholds of a forest fire danger rating system using max-stable extreme-event modeling. J Appl Meteorol Clim 54:395–407. https://doi.org/10.1175/JAMC-D-14-0041.1 Google Scholar
- Stephenson AG, Lehmann EA, Phatak A (2016) A max-stable process model for rainfall extremes at different accumulation durations. Weather Clim Extrem 13:44–53. https://doi.org/10.1016/j.wace.2016.07.002 Google Scholar
- Subramanya K (1984) Engineering hydrology. Tata McGraw-Hill, New DelhiGoogle Scholar
- R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
- Thibaud E, Aalto J, Cooley DS, Davison AC, Heikkinen J (2016) Bayesian inference for the Brown–Resnick process, with an application to extreme low temperatures. Ann Appl Stat 10(4):2303–2324. https://doi.org/10.1214/16-AOAS980 Google Scholar
- Tuszynski J (2014) caTools: tools: moving window statistics, GIF, Base64, ROC AUC, etc. R package version 1.17.1. https://CRAN.R-project.org/package=caTools
- Valencia D, Schaake JC (1972) A disaggregation model for time series analysis and synthesis, Report no. 149, Ralph M. Parsons Laboratory of Water Resources and Hydrodynamics, MIT, CambridgeGoogle Scholar
- Valencia D, Schaake JC (1973) Disaggregation processes in stochastic hydrology. Water Resour Res 9(3):211–219. https://doi.org/10.1029/WR009i003p00580 Google Scholar
- Van de Vyver H (2015) Bayesian estimation of rainfall intensity–duration–frequency relationships. J Hydrol 529(Part 3):1451–1463. https://doi.org/10.1016/j.jhydrol.2015.08.036 Google Scholar
- Varin C, Vidoni P (2005) A note on composite likelihood inference and model selection. Biometrika 92(3):519–528. https://doi.org/10.1093/biomet/92.3.519 Google Scholar
- Velghe T, Troch PA, De Troch FP, Van de Velde J (1994) Evaluation of cluster-based rectangular pulses point process models for rainfall. Water Resour Res 30(10):2847–2857. https://doi.org/10.1029/94WR01496 Google Scholar
- Veneziano D, Furcolo P (2002) Multifractality of rainfall and intensity–duration–frequency curves. Water Resour Res 38(12):1306–1317. https://doi.org/10.1029/2001WR000372 Google Scholar
- Veneziano D, Iacobellis V (2002) Multiscaling pulse representation of temporal rainfall. Water Resour Res 38(8):13-1–13-13. https://doi.org/10.1029/2001WR000522 Google Scholar
- Veneziano D, Langousis A (2005) The areal reduction factor a multifractal analysis. Water Resour Res 41(7):W07008. https://doi.org/10.1029/2004WR003765 Google Scholar
- Veneziano D, Langousis A (2010) Scaling and fractals in hydrology. In: Sivakumar B, Berndtsson R (eds) Advances in data-based approaches for hydrologic modeling and forecasting. World Scientific, Singapore, pp 107–243. https://doi.org/10.1142/9789814307987_0004 Google Scholar
- Veneziano D, Lepore C (2012) The scaling of temporal rainfall. Water Resour Res 48(8):W08516. https://doi.org/10.1029/2012WR012105 Google Scholar
- Veneziano D, Yoon S (2013) Rainfall extremes, excesses, and intensity–duration–frequency curves: a unified asymptotic framework and new nonasymptotic results based on multifractal measures. Water Resour Res 49(7):4320–4334. https://doi.org/10.1002/wrcr.20352 Google Scholar
- Veneziano D, Furcolo P, Iacobellis V (2002) Multifractality of iterated random pulse processes with pulse amplitudes generated by a random cascade. Fractals 10(2):1–11. https://doi.org/10.1142/S0218348X02001026 Google Scholar
- Veneziano D, Furcolo P, Iacobellis V (2006a) Imperfect scaling of time and space-time rainfall. J Hydrol 322(1–4):105–119. https://doi.org/10.1016/j.jhydrol.2005.02.044 Google Scholar
- Veneziano D, Langousis A, Furcolo P (2006b) Multifractality and rainfall extremes: a review. Water Resour Res 42(6):W06D15. https://doi.org/10.1029/2005WR004716 Google Scholar
- Veneziano D, Lepore C, Langousis A, Furcolo P (2007) Marginal methods of intensity–duration–frequency estimation in scaling and nonscaling rainfall. Water Resour Res 43(10):W10418. https://doi.org/10.1029/2007WR006040 Google Scholar
- Veneziano D, Langousis A, Lepore C (2009) New asymptotic and preasymptotic results on rainfall maxima from multifractal theory. Water Resour Res 45(11):W11421. https://doi.org/10.1029/2009WR008257 Google Scholar
- Verhoest N, Troch PA, De Troch FP (1997) On the applicability of Bartlett–Lewis rectangular pulses models in the modeling of design storms at a point. J Hydrol 202(1–4):108–120. https://doi.org/10.1016/S0022-1694(97)00060-7 Google Scholar
- Wadsworth JL, Tawn JA (2012) Dependence modelling for spatial extremes. Biometrika 99(2):253–272. https://doi.org/10.1093/biomet/asr080 Google Scholar
- Wanielista M (1990) Hydrology and water quality control. Wiley, New YorkGoogle Scholar
- Warnes GR, Bolker B, Gorjanc G, Grothendieck G, Korosec A, Lumley T, MacQueen D, Magnusson A, Rogers J, et al (2017) gdata: Various R programming tools for data manipulation. R package version 2.18.0. https://CRAN.R-project.org/package=gdata
- Waymire E, Gupta VK (1981a) The mathematical structure of rainfall representations: 1. A review of the stochastic rainfall models. Water Resour Res 17(5):1261–1272. https://doi.org/10.1029/WR017i005p01261 Google Scholar
- Waymire E, Gupta VK (1981b) The mathematical structure of rainfall representations: 2. A review of the theory of point processes. Water Resour Res 17(5):1273–1285. https://doi.org/10.1029/WR017i005p01273 Google Scholar
- Waymire E, Gupta VK (1981c) The mathematical structure of rainfall representations: 3. Some applications of the point process theory to rainfall processes. Water Resour Res 17(5):1287–1294. https://doi.org/10.1029/WR017i005p01287 Google Scholar
- Weibull W (1939) A statistical theory of the strength of materials. Ingeniors Vetenskaps Akademien 151:45–55Google Scholar
- Westra S, Sisson SA (2011) Detection of non-stationarity in precipitation extremes using a max-stable process model. J Hydrol 406(1–2):119–128. https://doi.org/10.1016/j.jhydrol.2011.06.014 Google Scholar
- Wickham H (2016) ggplot2. Springer, Berlin. https://doi.org/10.1007/978-3-319-24277-4 Google Scholar
- Wickham H (2017) scales: Scale functions for visualization. R package version 0.5.0. https://CRAN.R-project.org/package=scales
- Wickham H, Chang W (2018) devtools: Tools to Make Developing R Packages Easier. R package version 1.13.5. https://CRAN.R-project.org/package=devtools
- Willems P (2001) A spatial rainfall generator for small spatial scales. J Hydrol 252(1–4):126–144. https://doi.org/10.1016/S0022-1694(01)00446-2 Google Scholar
- Xie Y (2014) knitr: A comprehensive tool for reproducible research in R. In: Stodden V, Leisch F, Peng RD (eds) Implementing reproducible computational research. Chapman and Hall/CRC, Boca RatonGoogle Scholar
- Xie Y (2015) Dynamic documents with R and knitr, 2nd edn. Chapman and Hall/CRC, Boca RatonGoogle Scholar
- Xie Y (2018) knitr: A general-purpose package for dynamic report generation in R. R package version 1.20. https://CRAN.R-project.org/package=knitr
- Xu G, Genton MG (2016) Tukey max-stable processes for spatial extremes. Spat Stat 18(Part B):431–443. https://doi.org/10.1016/j.spasta.2016.09.002 Google Scholar
- Yoon S, Kumphon B, Park JS (2015) Spatial modeling of extreme rainfall in northeast Thailand. J Appl Stat 42(8):1813–1828. https://doi.org/10.1080/02664763.2015.1010492 Google Scholar
- Zhang Q, Xiao M, Li J, Singh VP, Wang Z (2014a) Topography-based spatial patterns of precipitation extremes in the Poyang Lake basin, China: Changing properties and causes. J Hydrol 512:229–239. https://doi.org/10.1016/j.jhydrol.2014.03.010 Google Scholar
- Zhang Q, Xiao M, Singh VP, Chen YD (2014b) Max-stable based evaluation of impacts of climate indices on extreme precipitation processes across the Poyang Lake basin, China. Glob Planet Change 122:271–281. https://doi.org/10.1016/j.gloplacha.2014.09.005 Google Scholar
- Zheng F, Thibaud E, Leonard M, Westra S (2015) Assessing the performance of the independence method in modeling spatial extreme rainfall. Water Resour Res 51(9):7744–7758. https://doi.org/10.1002/2015WR016893 Google Scholar