Advertisement

Synthetic design hydrographs for ungauged catchments: a comparison of regionalization methods

  • 419 Accesses

  • 5 Citations

Abstract

Design flood estimates for a given return period are required in both gauged and ungauged catchments for hydraulic design and risk assessments. Contrary to classical design estimates, synthetic design hydrographs provide not only information on the peak magnitude of events but also on the corresponding hydrograph volumes together with the hydrograph shapes. In this study, we tested different regionalization approaches to transfer parameters of synthetic design hydrographs from gauged to ungauged catchments. These approaches include classical regionalization methods such as linear regression techniques, spatial methods, and methods based on the formation of homogeneous regions. In addition to these classical approaches, we tested nonlinear regression models not commonly used in hydrological regionalization studies, such as random forest, bagging, and boosting. We found that parameters related to the magnitude of the design event can be regionalized well using both linear and nonlinear regression techniques using catchment area, length of the main channel, maximum precipitation intensity, and relief energy as explanatory variables. The hydrograph shape, however, was found to be more difficult to regionalize due to its high variability within a catchment. Such variability might be better represented by looking at flood-type specific synthetic design hydrographs.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abrahart RJ, See LM (2007) Neural network modelling of non-linear hydrological relationships. Hydrol Earth Syst Sci 11:1563–1579. https://doi.org/10.5194/hess-11-1563-2007

  2. Acreman MC, Sinclair CD (1986) Classification of drainage basins acording to their physical characteristics; an application for flood frequency analysis in Scotland. J Hydrol 84:365–380. https://doi.org/10.1016/0022-1694(86)90134-4

  3. Ahn KH, Palmer R (2016) Regional flood frequency analysis using spatial proximity and basin characteristics: quantile regression versus parameter regression technique. J Hydrol 540:515–526. https://doi.org/10.1016/j.jhydrol.2016.06.047

  4. Ali G, Tetzlaff D, Soulsby C, McDonnell JJ, Capell R (2012) A comparison of similarity indices for catchment classification using a cross-regional dataset. Adv Water Resour 40:11–22. https://doi.org/10.1016/j.advwatres.2012.01.008

  5. Archfield SA, Pugliese A, Castellarin A, Skøien JO, Kiang JE (2013) Topological and canonical kriging for design flood prediction in ungauged catchments: an improvement over a traditional regional regression approach? Hydrol Earth Syst Sci 17(4):1575–1588. https://doi.org/10.5194/hess-17-1575-2013

  6. Aziz K, Rai S, Rahmen A (2015) Design flood estimation in ungauged catchments using genetic algorithm-based artificial neural network (GAANN) technique for Australia. Nat Hazards 77:805–821. https://doi.org/10.1007/s11069-015-1625-x

  7. Aziz K, Haque MM, Rahman A, Shamseldin AY, Shoaib M (2016) Flood estimation in ungauged catchments: application of artificial intelligence based methods for Eastern Australia. Stoch Env Res Risk Assess. https://doi.org/10.1007/s00477-016-1272-0

  8. Bardossy A (2007) Calibration of hydrological model parameters for ungauged catchments. Hydrol Earth Syst Sci 11:703–710

  9. Bardossy A, Lehmann W (1997) Spatial distribution of soil moisture in a small catchment. Part 1: geostatistical analysis. J Hydrol 206:1–15. https://doi.org/10.1016/S0022-1694(97)00152-2

  10. Beygelzimer A, Kakadet S, Langford J, Arya S, Mount D, Li S (2013) Package ’FNN’: fast nearest neighbor search algorithms and applications. http://cran.r-project.org/package=FNN

  11. Bhunya PK, Panda SN, Goel MK (2011) Synthetic unit hydrograph methods: a critical review. Open Hydrol J 5:1–8. https://doi.org/10.2174/1874378101105010001

  12. Bitterli T, Aviolat P, Brändli R, Christe R, Fracheboud S, Frey D, George M, Matousek F, Tripet JP (2007) Groundwater resources. In: Hydrological Atlas of Switzerland, Bern, p 8.6

  13. Blöschl G (2006) Geostatistische Methoden bei der hydrologischen Regionalisierung. In: Godina R, Blöschl G (eds) Methoden der hydrologischen Regionalisierung, vol 197. Wiener Mitteilungen, Wien, pp 21–40

  14. Blöschl G, Sivapalan M, Wagener T, Viglione A, Savenije H (2013) Runoff prediction in ungauged basins. Cambridge University Press, Cambridge

  15. Boscarello L, Ravazzani G, Cislaghi A, Mancini M (2016) Regionalization of flow-duration curves through catchment classification with streamflow signatures and physiographic-climate indices. J Hydrol Eng. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001307

  16. Breiman L (1996) Bagging predictors. Mach Learn 24(421):123–140. https://doi.org/10.1007/BF00058655

  17. Breiman L (2001) Random Forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324

  18. Brunner MI, Seibert J, Favre AC (2016) Bivariate return periods and their importance for flood peak and volume estimation. Wire’s Water 3:819–833. https://doi.org/10.1002/wat2.1173

  19. Brunner MI, Sikorska AE, Furrer R, Favre AC (2017a) Uncertainty assessment of synthetic design hydrographs for gauged and ungauged catchments. Water Resour Res (accepted)

  20. Brunner MI, Viviroli D, Sikorska AE, Vannier O, Favre AC, Seibert J (2017b) Flood type specific construction of synthetic design hydrographs. Water Resour Res. https://doi.org/10.1002/2016WR019535

  21. Bundesamt für Statistik (2003) Geodaten der Bundesstatistik. https://www.bfs.admin.ch/bfs/de/home/dienstleistungen/geostat/geodaten-bundesstatistik.html

  22. Burn DH (1989) Cluster analysis as applied to regional flood frequency. J Water Resour Plan Manag 115:567–582

  23. Burn DH (1990) Evaluation of regional flood frequency analysis with a region of influence approach. Water Resour Res 26(10):2257–2265. https://doi.org/10.1029/WR026i010p02257

  24. Burn DH, Boorman DB (1992) Catchment classification applied to the estimation of hydrological parameters at ungauged catchments. Tech. rep, Institute of Hydrology, Wallingford, Oxfordshire

  25. Burn DH, Boorman DB (1993) Estimation of hydrological parameters at ungauged catchments. J Hydrol 143:429–454. https://doi.org/10.1016/0022-1694(93)90203-L

  26. Camezind-Wildi R (2005) Empfehlung Raumplanung und Naturgefahren. Tech. rep., Bundesamt für Raumentwicklung, Bundesamt für Wasser und Geologie, Bundesamt für Umwelt, Wald und Landschaft, Bern

  27. Castellarin A, Burn DH, Brath A (2001) Assessing the effectiveness of hydrological similarity measures for flood frequency analysis. J Hydrol 241(3):270–285. https://doi.org/10.1016/S0022-1694(00)00383-8

  28. Castiglioni S, Castellarin A, Montanari A, Skøien JO, Laaha G, Blöschl G (2011) Smooth regional estimation of low-flow indices: physiographical space based interpolation and top-kriging. Hydrol Earth Syst Sci 15(3):715–727. https://doi.org/10.5194/hess-15-715-2011

  29. Cavadias GS, Ouarda TBMJ, Bobée B, Girard C (2001) A canonical correlation approach to the determination of homogeneous regions for regional flood estimation of ungauged basins. Hydrol Sci J 46(4):499–512. https://doi.org/10.1080/02626660109492846

  30. Centre for Ecology and Hydrology (1999) Flood estimation handbook. Centre for Ecology and Hydrology, Wallingford, Oxfordshire

  31. Chapman TG, Maxwell AI (1996) Baseflow separation–comparison of numerical methods with tracer experiments. 23rd hydrology and water resources symposium. Hobart, Australia, pp 539–545

  32. Chebana F, Ouarda T (2009) Multivariate quantiles in hydrological frequency analysis. Environmetrics 22:63–78. https://doi.org/10.1002/env.1027

  33. Cheng L, Yaeger M, Viglione A, Coopersmith E, Ye S, Sivapalan M (2012) Exploring the physical controls of regional patterns of flow duration curves—Part 1: insights from statistical analyses. Hydrol Earth Syst Sci 16:4435–4446. https://doi.org/10.5194/hess-16-4435-2012

  34. Chokmani K, Ouarda TBMJ (2004) Physiographical space-based kriging for regional flood frequency estimation at ungauged sites. Water Resour Res 40(12):W12,514. https://doi.org/10.1029/2003WR002983

  35. Cipriani T, Toilliez T, Sauquet E (2012) Estimation régionale des débits décennaux et durées caractéristiques de crue en France. La Houille Blanche 4–5:5–13. https://doi.org/10.1051/lhb/2012024

  36. Coles S (2001) An introduction to statistical modeling of extreme values. Springer, London

  37. Cuevas A, Febrero M, Fraiman R (2007) Robust estimation and classification for functional data via projection-based depth notions. Comput Stat 22(3):481–496. https://doi.org/10.1007/s00180-007-0053-0

  38. Dawson CW, Abrahart RJ, Shamseldin AY, Wilby RL (2006) Flood estimation at ungauged sites using artificial neural networks. J Hydrol 319:391–409. https://doi.org/10.1016/j.jhydrol.2005.07.032

  39. Deutsche Vereinigung für Wasserwirtschaft Abwasser und Abfall (2012) Merkblatt DWA-M 552. Tech. rep, DWA, Hennef, Germany

  40. Diggle PJ, Ribeiro PJ Jr (2007) Model-based geostatistics. Springer series in statistics. Springer, New York

  41. Eckhardt K (2005) How to construct recursive digital filters for baseflow separation. Hydrol Process 19:507–515. https://doi.org/10.1002/hyp.5675

  42. Eidgenössische Forschungsanstalt für Wald Schnee und Landschaft (WSL) (1999) Schweizerisches Landesforstinventar. Ergebnisse der Zwietaufnahme 1993-1995. BUWAL, Bern

  43. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x

  44. Farmer WH (2016) Ordinary kriging as a tool to estimate historical daily streamflow records. Hydrol Earth Syst Sci 20(7):2721–2735. https://doi.org/10.5194/hess-20-2721-2016

  45. Freund Y, Schapire RRE (1996) Experiments with a new boosting algorithm. In: International conference on machine learning, pp 148–156, https://doi.org/10.1.1.133.1040, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.6252

  46. Friedman AJ, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordiante descent. J Stat Softw 33(1):1–22

  47. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232

  48. Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38(4):367–378

  49. Gaál L, Kysel J, Szolgay J (2008) Region-of-influence approach to a frequency analysis of heavy precipitation in Slovakia. Hydrol Earth Syst Sci 12:825–839. https://doi.org/10.5194/hess-12-825-2008

  50. Ganora D, Claps P, Laio F, Viglione A (2009) An approach to estimate nonparametric flow duration curves in ungauged basins. Water Resour Res 45(10):1–10. https://doi.org/10.1029/2008WR007472

  51. Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347)

  52. Gottschalk L (1993) Correlation and covariance of runoff. Stoch Hydrol Hydraul 7:85–101

  53. Gottschalk L, Leblois E, Skoien JO (2011) Correlation and covariance of runoff revisited. J Hydrol 398:76–90. https://doi.org/10.1016/j.jhydrol.2010.12.011

  54. Green IRA, Stephenson D (1986) Criteria for comparison of single event models. Hydrol Sci J 31(3):395–411. https://doi.org/10.1080/02626668609491056

  55. Greene W (2002) Econometric analysis, 5th edn. Prentice Hall, New Jersey

  56. GREHYS (1996) Presentation and review of some methods for regional flood frequency analysis. J Hydrol 186:63–84. https://doi.org/10.1016/S0022-1694(96)03042-9

  57. Grimaldi S, Petroselli A (2015) Do we still need the Rational Formula? An alternative empirical procedure for peak discharge estimation in small and ungauged basins. Hydrol Sci J 60(1):67–77. https://doi.org/10.1080/02626667.2014.880546

  58. Haberlandt U, Klöcking B, Krysanova V, Becker A (2001) Regionalisation of the base flow index from dynamically simulated flow components—a case study in the Elbe River Basin. J Hydrol 248:35–53. https://doi.org/10.1016/S0022-1694(01)00391-2

  59. Haddad K, Rahman A (2012) Regional flood frequency analysis in eastern Australia: Bayesian GLS regression-based methods within fixed region and ROI framework—quantile regression vs. parameter regression technique. J Hydrol 430–431:142–161. https://doi.org/10.1016/j.jhydrol.2012.02.012

  60. Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intell Inf Syst 17(2/3):107–145. https://doi.org/10.1023/A:1012801612483

  61. Harrell FE (2015) Regression modeling strategies. With applications to linear models, logistic and ordinal regression, and survival analysis. Springer, Cham

  62. Hastie T, Tibshirani R, Friedman J (2008) The elements of statistical learning. Springer series in statistics. Springer, Stanford

  63. He Y, Bardossy A, Zehe E (2011) A review of regionalisation for continuous streamflow simulation. Hydrol Earth Syst Sci 15:3539–3553. https://doi.org/10.5194/hess-15-3539-2011

  64. Hechenbichler K, Schliep K (2004) Weighted k-nearest-neighbor techniques and ordinal classification. Mol Ecol 399:17

  65. Hofner B, Mayr A, Robinzonov N, Schmid M (2009) Model-based Boosting in R. A Hands-on Tutorial Using the R Package mboost. Tech. rep., Department of statistics. University of Munich, Munich

  66. Hosking JRM, Wallis JR (1993) Some statistics useful in regional frequency analysis. Water Resour Res 29(92):271–281

  67. Hrachowitz M, Savenije HHG, Blöschl G, McDonnell JJ, Sivapalan M, Pomeroy JW, Arheimer B, Blume T, Clark MP, Ehret U, Fenicia F, Freer JE, Gelfan A, Gupta HV, Hughes DA, Hut RW, Montanari A, Pande S, Tetzlaff D, Troch PA, Uhlenbrook S, Wagener T, Winsemius HC, Woods RA, Zehe E, Cudennec C (2013) A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrol Sci J 58(6):1198–1255. https://doi.org/10.1080/02626667.2013.803183

  68. Hundecha Y, Ouarda TBMJ, Bardossy A (2008) Regional estimation of parameters of a rainfall-runoff model at ungauged watersheds using the spatial structures of the parameters within a canonical physiographic-climatic space. Water Resour Res 44(W01):427. https://doi.org/10.1029/2006WR005439

  69. Ilorme F, Griffis VW (2013) A novel procedure for delineation of hydrologically homogeneous regions and the classification of ungauged sites for design flood estimation. J Hydrol 492:151–162. https://doi.org/10.1016/j.jhydrol.2013.03.045

  70. James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning. With applications in R. Springer, New York. https://doi.org/10.1007/978-1-4614-7138-7

  71. Jensen H, Lang H, Rinderknecht J (1997) Extreme point rainfall of varying duration and return period 1901–1970. In: Hydrological Atlas of Switzerland, FOEN, Bern, chap 2.4

  72. Ji Z, Li N, Xie W, Wu J, Zhou Y (2013) Comprehensive assessment of flood risk using the classification and regression tree method. Stoch Env Res Risk Assess 27(8):1815–1828. https://doi.org/10.1007/s00477-013-0716-z

  73. Joe H (1997) Multivariate models and dependence concepts. Chapman and Hall/CRC, London

  74. Kiers HAL, Smilde AK (2007) A comparison of various methods for multivariate regression with highly collinear variables. Stat Methods Appl 16:193–228. https://doi.org/10.1007/s10260-006-0025-5

  75. Kjeldsen TR, Jones DA (2010) Predicting the index flood in ungauged UK catchments: on the link between data-transfer and spatial model error structure. J Hydrol 387(1–2):1–9. https://doi.org/10.1016/j.jhydrol.2010.03.024

  76. Kokkonen TS, Jakeman AJ, Young PC, Koivusalo HJ (2003) Predicting daily flows in ungauged catchments: model regionalization from catchment descriptors at the Coweeta Hydrologic Laboratory, North Carolina. Hydrol Process 17(11):2219–2238. https://doi.org/10.1002/hyp.1329

  77. Laaha G, Blöschl G (2006) A comparison of low flow regionalisation methods-catchment grouping. J Hydrol 323(1–4):193–214. https://doi.org/10.1016/j.jhydrol.2005.09.001

  78. Laaha G, Skoien JO, Blöschl G (2014) Spatial prediction on river networks: comparison of top-kriging with regional regression. Hydrol Process 28:315–324. https://doi.org/10.1002/hyp.9578

  79. Lang M, Ouarda T, Bobée B (1999) Towards operational guidelines for over-threshold modeling. J Hydrol 225:103–117

  80. Le Cessie S, van Houwelingen JC (1992) Ridge estimators in logistic regression. J Appl Stat 41(1):191–201. https://doi.org/10.2307/2347628

  81. Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2(3):18–22

  82. Longobardi A, Villani P (2008) Baseflow index regionalization analysis in a Mediterranean area and data scarcity context: role of the catchment permeability index. J Hydrol 355:63–75. https://doi.org/10.1016/j.jhydrol.2008.03.011

  83. Lu GY, Wong DW (2008) An adaptive inverse-distance weighting spatial interpolation technique. Comput Geosci 34(9):1044–1055. https://doi.org/10.1016/j.cageo.2007.07.010

  84. Matheron G (1971) The theory of regionalized variables and its applications, vol 5. École nationale supérieure des Mines, Paris

  85. McIntyre N, Lee H, Wheater H, Young A, Wagener T (2005) Ensemble predictions of runoff in ungauged catchments. Water Resour Res 41(12):1–14. https://doi.org/10.1029/2005WR004289

  86. Mediero L, Jiménez-Alvarez A, Garrote L (2010) Design flood hydrographs from the relationship between flood peak and volume. Hydrol Earth Syst Sci 14:2495–2505. https://doi.org/10.5194/hess-14-2495-2010

  87. Merz R (2006) Regionalisierung von statistischen Hochwasserkenngrössen. In: Godina R, Blöschl G (eds) Methoden der hydrologischen Regionalisierung, vol 197. Wiener Mitteilungen, Wien, pp 109–130

  88. Merz R, Blöschl G (2003) A process typology of regional floods. Water Resour Res 39(12):1340. https://doi.org/10.1029/2002WR001952

  89. Merz R, Blöschl G (2004) Regionalisation of catchment model parameters. J Hydrol 287(1):95–123. https://doi.org/10.1016/j.jhydrol.2003.09.028

  90. MeteoSwiss (2013) Documentation of MeteoSwiss grid-data products: Daily precipitation (final analysis): RhiresD. Tech. rep., MeteoSwiss, http://www.meteoschweiz.admin.ch/web/de/services/datenportal/gitterdaten/precip/rhiresd.Par.0007.DownloadFile.tmp/proddocrhiresd.pdf

  91. Mevik BH, Wehrens R (2007) The pls package: principal component and partial least squares regression in R. J Stat Softw 18(2):1–23. https://doi.org/10.18637/jss.v018.i02

  92. Meylan P, Favre AC, Musy A (2012) Predictive hydrology. A frequency analysis approach. Science Publishers, St. Helier, Jersey, British Channel Islands

  93. Myers RH, Montgomery DC, Vining GG, Robinson TJ (2010) Generalized Linear Models, vol 4. Wiley, Hoboken

  94. Nathan RJ, McMahon TA (1990) Identification of homogeneous regions for the purposes of regionalisation. J Hydrol 121:217–238

  95. Nied M, Pardowitz T, Nissen K, Ulbrich U, Hundecha Y, Merz B (2014) On the relationship between hydro-meteorological patterns and flood types. J Hydrol 519:3249–3262. https://doi.org/10.1016/j.jhydrol.2014.09.089

  96. Osborne JW (2010) Improving your data transformations: applying the Box-Cox transformation. Pract Assess Res Eval 15(12):1–9

  97. Ouarda T, Cunderlik JM, St-Hilaire A, Barbet M, Bruneau P, Bobée B (2006) Data-based comparison of seasonality-based regional flood frequency methods. J Hydrol 330(1):329–339. https://doi.org/10.1016/j.jhydrol.2006.03.023

  98. Ouarda TBMJ, Haché M, Bruneau P, Bobée B (2000) Regional flood peak and volume estimation in northern Canadian basin. J Cold Reg Eng 14:176–191. https://doi.org/10.1061/(ASCE)0887-381X(2000)14:4(176)

  99. Ouarda TBMJ, Girard C, Cavadias GS, Bobée B (2001) Regional flood frequency estimation with canonical correlation analysis. J Hydrol 254:157–173

  100. Oudin L, Andréassian V, Perrin C, Michel C, Moine NL (2008) Spatial proximity, physical similarity, regression and ungaged catchments: A comparison of regionalization approaches based on 913 French catchments. Water Resour Res 44:W03, 413. https://doi.org/10.1029/2007WR006240

  101. Oudin L, Kay A, Andréassian V, Perrin C (2010) Are seemingly physically similar catchments truly hydrologically similar? Water Resour Res 46(W11):558. https://doi.org/10.1029/2009WR008887

  102. Parajka J, Merz R, Blöschl G (2005) A comparison of regionalisation methods for catchment model parameters. Hydrol Earth Syst Sci 9:157–171. https://doi.org/10.5194/hess-9-157-2005

  103. Parajka J, Andréassian V, Archfield SA, Bardossy A, Blöschl G, Chiew F, Duan Q, Gelfan A, Hlavconva K, Merz R, McIntyre N, Oudin L, Perrin C, Rogger M, Salinas JL, Savenije HG, Skoien JO, Wagener T, Zehe E, Zhang Y (2013) Prediction of runoff hydrographs in ungauged basins. In: Blöschl G, Sivapalan M, Wagener T, Viglione A, Savenije H (eds) Predictions in ungauged basins. A synthesis across processes, places and scales, Cambridge University Press, Cambridge, pp 227–269

  104. Pebesma E (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30:683–691. https://doi.org/10.1016/j.cageo.2004.03.012

  105. Peters A, Hothorn T, Ripley BD, Therneau T, Atkinson B (2015) Package ‘ ipred ’ : improved predictors. http://cran.r-project.org/package=ipred

  106. Petroselli A, Grimaldi S (2015) Design hydrograph estimation in small and fully ungauged basins: a preliminary assessment of the EBA4SUB framework. J Flood Risk Manag. https://doi.org/10.1111/jfr3.12193

  107. Pilgrim DH (1986) Bridging the gap between flood research and design practice. Water Resour Res 22(9):165–176

  108. Prinzio MD, Castellarin A, Toth E (2011) Data-driven catchment classification: application to the pub problem. Hydrol Earth Syst Sci 15:1921–1935. https://doi.org/10.5194/hess-15-1921-2011

  109. R Core Team (2015) R: a language and environment for statistical computing. http://www.r-project.org/

  110. Rahman A, Charron C, Ouarda TBMJ, Chebana F (2017) Development of regional flood frequency analysis techniques using generalized additive models for Australia. Stoch Environ Res Risk Assess pp 1–17, https://doi.org/10.1007/s00477-017-1384-1

  111. Rai RK, Sarkar S, Singh VP (2009) Evaluation of the adequacy of statistical distribution functions for deriving unit hydrograph. Water Resour Manage 23:899–929. https://doi.org/10.1007/s11269-008-9306-0

  112. Rasmussen PF, Bobée B, Bernier J (1993) Une méthodologie générale de comparaison de modèles d’estimation régionale de crue. Revue des sciences de l’eau 7:23–41. https://doi.org/10.7202/705187ar

  113. Razavi T, Coulibaly P (2013) Streamflow prediction in ungauged basins: review of regionalization methods. J Hydrol Eng 18(8):958–975. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000690

  114. Requena AI, Mediero L, Garrote L (2013) A bivariate return period based on copulas for hydrologic dam design: accounting for reservoir routing in risk estimation. Hydrol Earth Syst Sci 17:3023–3038. https://doi.org/10.5194/hess-17-3023-2013

  115. Ridgeway G (2007) Generalized boosted models: a guide to the gbm package. Compute 1(4):1–12. https://doi.org/10.1111/j.1467-9752.1996.tb00390.x

  116. Rosbjerg D, Blöschl G, Burn DH, Castellarin A, Croke B, Baldassarre GD, Iacobellis V, Kjeldsen TR, Kuczera G, Merz R, Montanari A, Morris D, Ouarda T, Ren L, Rogger M, Salinas JL, Toth E, Viglione A (2013) Prediction of floods in ungauged basins. In: Blöschl G, Sivapalan M, Wagener T, Viglione A, Savenije H (eds) Runoff prediction in ungauged basins. A synthesis across processes, places and scales, Cambridge University Press, Cambridge, chap 9, pp 189–226

  117. Salinas JL, Laaha G, Rogger M, Parajka J, Viglione A, Sivapalan M, Blöschl G (2013) Comparative assessment of predictions in ungauged basins—Part 2: flood and low flow studies. Hydrol Earth Syst Sci 17:2637–2652. https://doi.org/10.5194/hess-17-2637-2013

  118. Samuel J, Coulibaly P, Metcalfe RA (2011) Estimation of continuous streamflow in ontario ungauged basins: comparison of regionalization methods. J Hydrol Eng 16(5):447–459. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000338

  119. Sauquet E (2006) Mapping mean annual river discharges: geostatistical developments for incorporating river network dependencies. J Hydrol 331:300–314. https://doi.org/10.1016/j.jhydrol.2006.05.018

  120. Sauquet E, Catalogne C (2011) Comparison of catchment grouping methods for flow duration curve estimation at ungauged sites in France. Hydrol Earth Syst Sci 15:2421–2435. https://doi.org/10.5194/hess-15-2421-2011

  121. Sefton CEM, Howarth SM (1998) Relationships between dynamic response characteristics and physical descriptors of catchments in England and wales. J Hydrol 211(1–4):1–16. https://doi.org/10.1016/S0022-1694(98)00163-2

  122. Serinaldi F, Grimaldi S (2011) Synthetic design hydrographs based on distribution functions with finite support. J Hydrol Eng 16:434–446. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000339

  123. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(34):591–611

  124. Shiau J, Wang HY, Tsai CT (2006) Bivariate Frequency Analysis of floods using copulas. J Am Water Resour Assoc pp 1549–1564, https://doi.org/10.1111/j.1752-1688.2006.tb06020.x

  125. Shu C, Burn DH (2004) Artificial neural network ensembles and their application in pooled flood frequency analysis. Water Resour Res 40(9):1–10. https://doi.org/10.1029/2003WR002816

  126. Shu C, Ouarda T (2008) Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system. J Hydrol 349:31–43. https://doi.org/10.1016/j.jhydrol.2007.10.050

  127. Sikorska AE, Viviroli D, Seibert J (2015) Flood type classification in mountainous catchments using crisp and fuzzy decision trees. Water Resour Res 51(10):7959–7976. https://doi.org/10.1002/2015WR017326

  128. Singh PK, Mishra SK, Jain MK (2014) A review of the synthetic unit hydrograph: from the empirical UH to advanced geomorphological methods. Hydrol Sci J. https://doi.org/10.1080/02626667.2013.870664

  129. Sivapalan M (2003) Prediction in ungauged basins: a grand challenge for theoretical hydrology. Hydrol Process 17:3163–3170. https://doi.org/10.1002/hyp.5155

  130. Skoien JO, Merz R, Blöschl G (2006) Top-kriging—geostatistics on stream networks. Hydrol Earth Syst Sci 10:277–287. https://doi.org/10.5194/hess-10-277-2006

  131. Skoien JO, Blöschl G, Laaha G, Pebesma E, Parajka J, Viglione A (2014) An R package for interpolation of data with a variable spatial support, with an example from river networks. Comput Geosci 67:180–190

  132. Smithers JC (2012) Methods for design flood estimation in South Africa. Water SA 38(4):633–646. https://doi.org/10.4314/wsa.v38i4.19

  133. Steinschneider S, Yang YCE, Brown C (2014) Combining regression and spatial proximity for catchment model regionalization: a comparative study. Hydrol Sci J 6667:1–18. https://doi.org/10.1080/02626667.2014.899701

  134. Strobl C, Malley J, Tutz G (2009) An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging and random forests. Psychol Methods 14(4):323–348. https://doi.org/10.1037/a0016973

  135. Takezawa K (2012) Introduction to nonparametric regression. Wiley, Hoboken, https://doi.org/10.1021/cr2001349

  136. Tibshirani R (1997) The lasso method for variable selection in the Cox model. Stat Med 16(4):385–395. https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4%3c385::AID-SIM380%3e3.0.CO;2-3

  137. Tung YK, Yeh KC, Yang JC (1997) Regionalization of unit hydrograph parameters: 1. Comparison of regression analysis techniques. Stoch Hydrol Hydraul 11:145–171

  138. Viglione A, Merz R, Blöschl G (2009) On the role of the runoff coefficient in the mapping of rainfall to flood return periods. Hydrol Earth Syst Sci 6(1):627–665. https://doi.org/10.5194/hessd-6-627-2009

  139. Viviroli D, Mittelbach H, Gurtz J, Weingartner R (2009a) Continuous simulation for flood estimation in ungauged mesoscale catchments of Switzerland—Part II: parameter regionalisation and flood estimation results. J Hydrol 377:208–225. https://doi.org/10.1016/j.jhydrol.2009.08.022

  140. Viviroli D, Zappa M, Gurtz J, Weingartner R (2009b) An introduction to the hydrological modelling system PREVAH and its pre-and post-processing-tools. Environ Model Softw 24:1209–1222. https://doi.org/10.1016/j.envsoft.2009.04.001

  141. Webster R, Oliver MA (2007) Geostatistics for environmental scientists. Statistics in practice. Wiley, Chichester

  142. Weisberg S (2005) Applied Linear Regression, 3rd edn. Wiley, Hoboken

  143. Yamamoto JK (2007) On unbiased backtransform of lognormal kriging estimates. Comput Geosci 11:219–234. https://doi.org/10.1007/s10596-007-9046-x

  144. Yue S, Rasmussen P (2002) Bivariate frequency analysis: discussion of some useful concepts in hydrological application. Hydrol Process 16:2881–2898. https://doi.org/10.1002/hyp.1185

  145. Yue S, Ouarda T, Bobée B, Legendre P, Bruneau P (2002) Approach for describing statistical properties of flood hydrograph. J Hydrol Eng 7(2):147–153. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:2(147)

  146. Zhang Y, Chiew FHS (2009) Relative merits of different methods for runoff predictions in ungauged catchments. Water Resour Res 45(W07):412. https://doi.org/10.1029/2008WR007504

Download references

Acknowledgements

We thank the Federal Office for the Environment (FOEN) for funding the project (contract 13.0028.KP/M285-0623) and for providing runoff measurement data. We also thank MeteoSwiss for providing precipitation data. The data used in this study is available upon order from the FOEN and MeteoSwiss. For the hydrological data of the federal stations, the order form under http://www.bafu.admin.ch/wasser/13462/13494/15076/index.html?lang=de can be used. The hydrological data of the cantonal stations can be ordered from the respective cantons. The meteorological data can be ordered via https://shop.meteoswiss.ch/index.html. We thank the associate editor and the four reviewers for their constructive and detailed comments.

Author information

Correspondence to Manuela I. Brunner.

Appendix: List of stations used in this regionalization study

Appendix: List of stations used in this regionalization study

See Table 5.

Table 5 List of stations used in this regionalization study, a summary of their catchment characteristics, and their locally estimated SDH parameters (last ten columns)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brunner, M.I., Furrer, R., Sikorska, A.E. et al. Synthetic design hydrographs for ungauged catchments: a comparison of regionalization methods. Stoch Environ Res Risk Assess 32, 1993–2023 (2018). https://doi.org/10.1007/s00477-018-1523-3

Download citation

Keywords

  • Regionalization
  • Ungauged catchments
  • Design hydrographs
  • Flood estimation
  • Regression trees