Advertisement

Stochastic Environmental Research and Risk Assessment

, Volume 32, Issue 9, pp 2537–2549 | Cite as

A novel geostatistical approach combining Euclidean and gradual-flow covariance models to estimate fecal coliform along the Haw and Deep rivers in North Carolina

  • Prahlad Jat
  • Marc L. SerreEmail author
Original Paper

Abstract

Incorporating flow in the covariance function is important for geostatistical water quality estimation that accounts for hydrological transport. Very few studies have successfully incorporated flow due to various reasons including implementation difficulties. To address this critical issue, we introduce here the first implementation of a flow weighted covariance model that uses gradual flow, and we use this model in a novel hybrid Euclidean/Gradual-flow covariance model to estimate fecal coliform along the Haw and Deep rivers from 2006 to 2010. The hybrid Euclidean/Gradual-flow model results in a 12.4% reduction in estimation mean square error compared to the Euclidean model, indicating that this is the first study to successfully incorporate gradual flow and demonstrate an improvement in estimation accuracy over the purely Euclidean approach. Furthermore, results show that the Euclidean/Gradual-flow model is more accurate and easier to implement than the Euclidean/Pipe-flow model. Our assessment found that 96 river miles were detected as being impaired according to the Euclidean/Gradual-flow method, which is more than twice the 39 river miles found according to the Euclidean estimate. These results demonstrate that the Euclidean/Gradual-flow model substantially increase the sensitivity in detecting fecal impairment, which provide critical new information for watershed management and public health protection measures.

Keywords

Fecal coliform Monitoring Flow covariance Geostatistics 

Notes

Acknowledgements

This work was supported in part by Grant Number P42ES005948 of the National Institute of Environmental Health Sciences, and by NSF Grant 1316318 as part of the joint NSF-NIH-USDA Ecology and Evolution of Infectious Diseases program.

Supplementary material

477_2018_1512_MOESM1_ESM.pdf (1.7 mb)
Supplementary material 1 (PDF 1771 kb)

References

  1. Akita Y, Carter G, Serre ML (2007) Spatiotemporal nonattainment assessment of surface water tetrachloroethylene in New Jersey. J Environ Qual 36(2):508–520.  https://doi.org/10.2134/jeq2005.0426 CrossRefGoogle Scholar
  2. Bernard-Michel C, De Fouquet C (2006) Construction of valid covariances along a hydrographic network. Application to specific water discharge on the Moselle Basin. In: Proceedings of IAMG (pp 3–8)Google Scholar
  3. Cho KH, Pachepsky YA, Kim M, Pyo J, Park MH, Kim YM, Kim JH (2016) Modeling seasonal variability of fecal coliform in natural surface waters using the modified SWAT. J Hydrol 535:377–385.  https://doi.org/10.1016/j.jhydrol.2016.01.084 CrossRefGoogle Scholar
  4. Christakos G (1990) Modern spatiotemporal geostatistics. Oxford University Press, New YorkGoogle Scholar
  5. Christakos G, Serre ML (2000) BME analysis of spatiotemporal particulate matter distributions in North Carolina. Atmos Environ 34(20):3393–3406.  https://doi.org/10.1016/S1352-2310(00)00080-7 CrossRefGoogle Scholar
  6. Christakos G, Bogaert P, Serre ML (2001) Temporal geographical information systems: advanced functions for field-based applications. Springer, BerlinGoogle Scholar
  7. Cressie N, Frey J, Harch B, Smith M (2006) Spatial prediction on a river network. J Agric Biol Environ Stat 11(2):127–150.  https://doi.org/10.1198/108571106X110649 CrossRefGoogle Scholar
  8. Curriero FC (2006) On the use of non-euclidean distance measures in geostatistics. Math Geol 38(8):907–926.  https://doi.org/10.1007/s11004-006-9055-7 CrossRefGoogle Scholar
  9. de Fouquet C, Bernard-Michel C (2006) Modeles geostatistiques de concentrations ou de debits le long des cours d’eau. Comptes Rendus Geosci 338(5):307–318.  https://doi.org/10.1016/j.crte.2006.02.002 CrossRefGoogle Scholar
  10. Delhomme JP (1978) Kriging in the hydrosciences. Adv Water Resour 1(5):251–266.  https://doi.org/10.1016/0309-1708(78)90039-8 CrossRefGoogle Scholar
  11. Dia M, Wehner TC, Arellano C (2016a) Analysis of genotype x environment interaction (GxE) using SAS programming. Agron J 108(5):1838–1852.  https://doi.org/10.2134/agronj2016.02.0085 CrossRefGoogle Scholar
  12. Dia M, Wehner TC, Perkins-Veazie P, Hassell R, Price DS, Boyhan GE, Juarez B (2016b) Stability of fruit quality traits in diverse watermelon cultivars tested in multiple environments. Hortic Res 3(November):16066.  https://doi.org/10.1038/hortres.2016.66 CrossRefGoogle Scholar
  13. Dia M, Weindorf DC, Thompson C, Cummings H, Rusu H, Cacovean H (2009) Spatial distribution of heavy metals in the soils of Erath County, Texas. Stud Geogr 54(2):99–114Google Scholar
  14. EPA (2004) The national water quality inventory. Office of Water, Washington, p 20460Google Scholar
  15. Francy DS, Helsel DR, Nally RA (2000) Occurrence and distribution of microbiological indicators in groundwater and stream. Water Environ Res 72(2): 152–161. Retrieved from http://www.jstor.org/stable/25045352
  16. Genton MG (2007) Separable approximations of space-time covariance matrices. Environ 18(7):681–695CrossRefGoogle Scholar
  17. Heaney CD, Sams E, Dufour AP, Brenner KP, Haugland A, Chern E, Wade TJ (2012) Fecal indicators in sand, sand contact, and risk of enteric illness among beachgoers. Epidemiology 23(1):95–106CrossRefGoogle Scholar
  18. Isaak DJ, Peterson EE, Ver Hoef JM, Wenge SJ, Falke JA, Torgersen CE, Monestiez P (2014) Applications of spatial statistical network models to stream data. WIREs Water 1(June):277–294.  https://doi.org/10.1002/wat2.1023 CrossRefGoogle Scholar
  19. Jager HI, Sale MJ, Schmoyer RL (1990) Cokriging to assess regional stream quality in the Southern Blue Ridge Province. Water Resour Res 26(7):1401–1412.  https://doi.org/10.1029/WR026i007p01401 CrossRefGoogle Scholar
  20. Jat P (2017) Geostatistical estimation of water quality using river and flow covariance models. Dissertation, University of North Carolina at Chapel HillGoogle Scholar
  21. Jat P, Serre ML (2016) Bayesian maximum entropy space/time estimation of surface water chloride in Maryland using river distances. Environ Pollut 219:1148–1155.  https://doi.org/10.1016/j.envpol.2016.09.020 CrossRefGoogle Scholar
  22. Kumar R, Dia M, Wehner TC (2013) Implications of mating behavior in watermelon breeding. HortScience 48(8):960–964.  https://doi.org/10.2135/cropsci2015.10.0625 CrossRefGoogle Scholar
  23. Messier KP, Akita Y, Serre ML (2012) Integrating address geocoding, land use regression, and spatiotemporal geostatistical estimation for groundwater tetrachloroethylene. Environ Sci Technol 46(5):2772–2780.  https://doi.org/10.1021/es203152a CrossRefGoogle Scholar
  24. Messier KP, Campbell T, Bradley PJ, Serre ML (2015) Estimation of groundwater radon in North Carolina using land use regression and Bayesian maximum entropy. Environ Sci Technol 49(16):9817–9825.  https://doi.org/10.1021/acs.est.5b01503 CrossRefGoogle Scholar
  25. Money ES, Carter GP, Serre ML (2009a) Modern space/time geostatistics using river distances: data integration of turbidity and E. coli measurements to assess fecal contamination along the Raritan River in New Jersey. Environ Sci Technol 43(10):3736–3742.  https://doi.org/10.1021/es803236j CrossRefGoogle Scholar
  26. Money E, Carter GP, Serre ML (2009b) Using river distances in the space/time estimation of dissolved oxygen along two impaired river networks in New Jersey. Water Res 43(7):1948–1958.  https://doi.org/10.1016/j.watres.2009.01.034 CrossRefGoogle Scholar
  27. Money ES, Sackett DK, Aday DD, Serre ML (2011) Using river distance and existing hydrography data can improve the geostatistical estimation of fish tissue mercury at unsampled locations. Environ Sci Technol 45(18):7746–7753CrossRefGoogle Scholar
  28. Murphy RR, Perlman E, Ball WP, Curriero FC (2014) Water-distance-based kriging in Chesapeake Bay. J Hydrol Eng 20(9):05014034CrossRefGoogle Scholar
  29. NC Department of Environment and Natural Resources Division (2006) North Carolina water quality assessment and impaired waters list (2006 Integrated 305(b) and 303(d) Report) (Vol. 305). Retrieved from http://h2o.enr.state.nc.us/tmdl/documents/2006IR_FINAL_000.pdf
  30. Oliver DM, Heathwaite AL, Fish RD, Chadwick DR, Hodgson CJ, Winter M, Butler AJ (2009) Scale appropriate modelling of diffuse microbial pollution from agriculture. Prog Phys Geogr 33(3):358–377.  https://doi.org/10.1177/0309133309342647 CrossRefGoogle Scholar
  31. Oliver DM, Porter KDH, Pachepsky YA, Muirhead RW, Reaney SM, Coffey R, Quilliam RS (2016) Predicting microbial water quality with models: over-arching questions for managing risk in agricultural catchments. Sci Total Environ 544(November 2015):39–47.  https://doi.org/10.1016/j.scitotenv.2015.11.086 CrossRefGoogle Scholar
  32. Pachepsky YA, Sadeghi AM, Bradford SA, Shelton DR, Guber AK, Dao T (2006) Transport and fate of manure-borne pathogens: modeling perspective. Agric Water Manag 86(1–2):81–92.  https://doi.org/10.1016/j.agwat.2006.06.010 CrossRefGoogle Scholar
  33. Pandey PK, Soupir ML (2013) Assessing the impacts of E. coli laden streambed sediment on E. coli loads over a range of flows and sediment characteristics. J Am Water Resour Assoc 49(6):1261–1269.  https://doi.org/10.1111/jawr.12079 CrossRefGoogle Scholar
  34. Parajuli PB, Mankin KR, Barnes PL (2009) Source specific fecal bacteria modeling using soil and water assessment tool model. Bioresour Technol 100(2):953–963.  https://doi.org/10.1016/j.biortech.2008.06.045 CrossRefGoogle Scholar
  35. Peterson EE, Urquhar SN (2006) Predicting water quality impaired stream segments using landscape-scale data and a regional geostatistical model: a case study in Maryland. Environ Monit Assess 121(1–3):613–636.  https://doi.org/10.1007/s10661-005-9163-8 CrossRefGoogle Scholar
  36. Serre ML, Christakos G (1999) Modern geostatistics: computational BME analysis in the light of uncertain physical knowledge: the Equus Beds study. Stoch Environ Res Risk Assess 13(1–2):1–26.  https://doi.org/10.1007/s004770050029 CrossRefGoogle Scholar
  37. Soller JA, Schoen ME, Bartrand T, Ravenscroft JE, Ashbolt NJ (2010) Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Res 44(16):4674–4691.  https://doi.org/10.1016/j.watres.2010.06.049 CrossRefGoogle Scholar
  38. USEPA (1986) Ambient water quality criteria for bacteria. Retrieved from http://www.epa.gov/waterscience/beaches/files/1986crit.pdf
  39. USGS Hydrography data (2015) http://nhd.usgs.gov/data.html. Assessed on Oct 6, 2015
  40. Ver Hoef JM, Peterson E, Theobald D (2006) Spatial statistical models that use flow and stream distance. Environ Ecol Stat 13(4):449–464.  https://doi.org/10.1007/s10651-006-0022-8 CrossRefGoogle Scholar
  41. Weindorf DC, Sarkar R, Dia M, Wang H, Chang Q, Haggard B, Wooten A (2008a) Correlation of X-ray fluorescence spectrometry and inductively coupled plasma atomic emission spectroscopy for elemental determination in composted products. Compost Sci Util 16(2):79–82CrossRefGoogle Scholar
  42. Weindorf D, Rinard B, Zhu Y, Johnson S, Haggard B, Mcpherson J, Mcwhirt A (2008b) High resolution soil survey of Capulin volcano national monument, New Mexico. Soil Surv Horiz 49:55–62CrossRefGoogle Scholar
  43. Yang X, Jin W (2010) GIS-based spatial regression and prediction of water quality in river networks: a case study in Iowa. J Environ Manag 91(10):1943–1951CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental Sciences and Engineering, Gillings School of Global Public HealthUniversity of North CarolinaChapel HillUSA

Personalised recommendations