Directional hydrostratigraphic units simulation using MCP algorithm

  • N. Benoit
  • D. Marcotte
  • A. Boucher
  • D. D’Or
  • A. Bajc
  • H. Rezaee
Original Paper

Abstract

Understanding the geological uncertainty of hydrostratigraphic models is important for risk assessment in hydrogeology. An important feature of sedimentary deposits is the directional ordering of hydrostratigraphic units (HSU). Geostatistical simulation methods propose efficient algorithm for assessing HSU uncertainty. Among different geostatistical methods to simulate categorical data, Bayesian maximum entropy method (BME) and its simplified version Markov-type categorical prediction (MCP) present interesting features. In particular, the zero-forcing property of BME and MCP can provide a valuable constrain on directional properties. We illustrate the ability of MCP to simulate vertically ordered units. A regional hydrostratigraphic system with 11 HSU and different abundances is used. The transitional deterministic model of this system presents lateral variations and vertical ordering. The set of 66 (11 × 12/2) bivariate probability functions is directly calculated on the deterministic model with fast Fourier transform. Despite the trends present in the deterministic model, MCP is unbiased for the HSU proportions in the non-conditional case. In the conditional cases, MCP proved robust to datasets over-representing some HSU. The inter-realizations variability is shown to closely follow the amount and quality of data provided. Our results with different conditioning datasets show that MCP replicates adequately the directional units arrangement. Thus, MCP appears to be a practical method for generating stochastic models in a 3D hydrostratigraphic context.

Keywords

Bayesian maximum entropy (BME) Markov-type categorical prediction (MCP) Bivariate probabilities Hydrostratigraphic units (HSU) Units ordering Categorical simulation Model uncertainty 

Notes

Acknowledgements

Constructive comments from two anonymous reviewers were helpful improving the manuscript. In particular, one reviewer suggested to us the idea of comparing MCP to Gaussian simulator as in Sect. 2.4. The authors thank A. Bolduc, Y. Michaud and H. Russell for their support from the Groundwater Geoscience Program, Geological Survey of Canada, Natural Resources Canada. Research was partly financed by NSERC (RGPIN-2015-06653).

References

  1. Allard D, D’Or D, Froidevaux R (2011) An efficient maximum entropy approach for categorical variable prediction. Eur J Soil Sci 62:381–393.  https://doi.org/10.1111/j.1365-2389.2011.01362.x CrossRefGoogle Scholar
  2. Armstrong M, Galli A, Beucher H, Loc’h G, Renard D, Doligez B, Eschard R, Geffroy F (2011) Plurigaussian simulations in geosciences. Springer, BerlinCrossRefGoogle Scholar
  3. Arpat GB, Caers J (2007) Conditional simulation with patterns. Math Geol 39(2):177–203.  https://doi.org/10.1007/s11004-006-9075-3 CrossRefGoogle Scholar
  4. Bajc A, Mulligan R, Rainsford D, Webb J (2015) Results of 2011–13 overburden drilling programs in the southern part of the County of Simcoe, south-central Ontario; Ontario Geological Survey, Miscellaneous Release-Data 324. Techical reportGoogle Scholar
  5. Bogaert P (2002) Spatial prediction of categorical variables: the Bayesian maximum entropy approach. Stoch Environ Res Risk Assess 16(6):425–448.  https://doi.org/10.1007/s00477-002-0114-4 CrossRefGoogle Scholar
  6. Bogaert P, D’Or D (2002) Estimating soil properties from thematic soil maps: the Bayesian Maximum Entropy approach. Soil Sci Soc Am J 66(5):1492–1500.  https://doi.org/10.2136/sssaj2002.1492 CrossRefGoogle Scholar
  7. Boucher A, Costa JF, Rasera LG, Motta E (2014) Simulation of geological contacts from interpreted geological model using multiple-point statistics. Math Geosci 46(5):561–572.  https://doi.org/10.1007/s11004-013-9510-1 CrossRefGoogle Scholar
  8. Chilès J, Delfiner P (2012) Geostatistics: modeling spatial uncertainty, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  9. Christakos G (1992) Random field models in earth sciences. Academic Press, San Diego.  https://doi.org/10.1016/B978-0-12-174230-0.50005-6 Google Scholar
  10. D’Or D (2003) Spatial prediction of soil properties, the Bayesian Maximum Entropy approach. Ph.D. thesis, Université catholique de LouvainGoogle Scholar
  11. D’Or D, Bogaert P (2004) Spatial prediction of categorical variables with the Bayesian Maximum Entropy approach: the Ooypolder case study. Eur J Soil Sci 55(4):763–775.  https://doi.org/10.1111/j.1365-2389.2004.00628.x CrossRefGoogle Scholar
  12. D’Or D, Bogaert P, Christakos G (2001) Application of the BME approach to soil texture mapping. Stoch Environ Res Risk Assess 15(1):87–100.  https://doi.org/10.1007/s004770000057 CrossRefGoogle Scholar
  13. Jakeman A, Barreteau O, Hunt R, Rinaudo JD, Ross A (2016) Integrated groundwater management—concepts, approaches and challenges, vol 1. Springer, BerlinCrossRefGoogle Scholar
  14. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86. http://www.jstor.org/stable/2236703
  15. Le Blévec TL, Dubrule O, John CM, Hampson GJ (2017) Modelling asymmetrical facies successions using pluri-Gaussian simulations. Geostatistics Valencia 2016, quantitative geology and geostatistics. Springer, Cham, pp 59–75.  https://doi.org/10.1007/978-3-319-46819-8_4 CrossRefGoogle Scholar
  16. Li W (2007) Markov chain random fields for estimation of categorical variables. Math Geol 39(3):321–335.  https://doi.org/10.1007/s11004-007-9081-0 CrossRefGoogle Scholar
  17. Li W, Zhang C (2007) A random-path Markov chain algorithm for simulating categorical soil variables from random point samples. Soil Sci Soc Am J 71(3):656–668.  https://doi.org/10.2136/sssaj2006.0173 CrossRefGoogle Scholar
  18. Li W, Zhang C, Burt JE, Zhu AX, Feyen J (2004) Two-dimensional Markov chain simulation of soil type spatial distribution. Soil Sci Soc Am J 68(5):1479–1490.  https://doi.org/10.2136/sssaj2004.1479 CrossRefGoogle Scholar
  19. Marcotte D (1996) Fast variogram computation with FFT. Comput Geosci 22(10):1175–1186.  https://doi.org/10.1016/S0098-3004(96)00026-X CrossRefGoogle Scholar
  20. Mariethoz G, Renard P, Straubhaar J (2010) The direct sampling method to perform multiple-point geostatistical simulations. Water Resour Res 46(11):W11536.  https://doi.org/10.1029/2008WR007621 Google Scholar
  21. Molson JW, Frind EO (2012) On the use of mean groundwater age, life expectancy and capture probability for defining aquifer vulnerability and time-of-travel zones for source water protection. J Contam Hydrol 127(1–4):76–87.  https://doi.org/10.1016/j.jconhyd.2011.06.001 CrossRefGoogle Scholar
  22. Ortiz JM (2003) Characterization of high order correlation for enhanced indicator simulation. Ph.D. thesis, University of Alberta, Edmonton, Alberta, CanadaGoogle Scholar
  23. Orton TG, Lark RM (2007) Accounting for the uncertainty in the local mean in spatial prediction by Bayesian Maximum Entropy. Stoch Environ Res Risk Assess 21(6):773–784.  https://doi.org/10.1007/s00477-006-0089-7 CrossRefGoogle Scholar
  24. Ravalec ML, Noetinger B, Hu LY (2000) The FFT moving average (FFT-MA) generator: an efficient numerical method for generating and conditioning Gaussian simulations. Math Geol 32(6):701–723.  https://doi.org/10.1023/A:1007542406333 CrossRefGoogle Scholar
  25. Refsgaard JC, Christensen S, Sonnenborg TO, Seifert D, Højberg AL, Troldborg L (2012) Review of strategies for handling geological uncertainty in groundwater flow and transport modeling. Adv Water Resour 36:36–50.  https://doi.org/10.1016/j.advwatres.2011.04.006 CrossRefGoogle Scholar
  26. Rezaee H, Asghari O, Koneshloo M, Ortiz JM (2014) Multiple-point geostatistical simulation of dykes: application at Sungun porphyry copper system, Iran. Stoch Environ Res Risk Assess 28(7):1913–1927.  https://doi.org/10.1007/s00477-014-0857-8 CrossRefGoogle Scholar
  27. Rezaee H, Marcotte D, Tahmasebi P, Saucier A (2015) Multiple-point geostatistical simulation using enriched pattern databases. Stoch Environ Res Risk Assess 29(3):893–913.  https://doi.org/10.1007/s00477-014-0964-6 CrossRefGoogle Scholar
  28. Serre ML, Christakos G (1999) Modern geostatistics: computational BME analysis in the light of uncertain physical knowledge—the Equus Beds study. Stoch Environ Res Risk Assess 13(1–2):1–26.  https://doi.org/10.1007/s004770050029 CrossRefGoogle Scholar
  29. Serre ML, Christakos G, Li H, Miller CT (2003) A BME solution of the inverse problem for saturated groundwater flow. Stoch Environ Res Risk Assess 17(6):354–369.  https://doi.org/10.1007/s00477-003-0156-2 CrossRefGoogle Scholar
  30. Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1–21.  https://doi.org/10.1023/A:1014009426274 CrossRefGoogle Scholar
  31. Tran TT (1994) Improving variogram reproduction on dense simulation grids. Comput Geosci 20(7):1161–1168.  https://doi.org/10.1016/0098-3004(94)90069-8 CrossRefGoogle Scholar
  32. Zhou Y, Li W (2011) A review of regional groundwater flow modeling. Geosci Front 2(2):205–214.  https://doi.org/10.1016/j.gsf.2011.03.003 CrossRefGoogle Scholar

Copyright information

© Crown 2017

Authors and Affiliations

  • N. Benoit
    • 1
    • 2
  • D. Marcotte
    • 2
  • A. Boucher
    • 3
  • D. D’Or
    • 4
  • A. Bajc
    • 5
  • H. Rezaee
    • 2
  1. 1.Geological Survey of Canada (NRCan)Quebec CityCanada
  2. 2.Polytechnique MontréalMontrealCanada
  3. 3.Advanced Resources and Risk Technology LLCDenverUSA
  4. 4.Ephesia ConsultSombreffeBelgium
  5. 5.Ontario Geological SurveySudburyCanada

Personalised recommendations