Testing the type of non-separability and some classes of space-time covariance function models

Abstract

In statistical space-time modeling, the use of non-separable covariance functions is often more realistic than separable models. In the literature, various tests for separability may justify this choice. However, in case of rejection of the separability hypothesis, none of these tests include testing for the type of non-separability of space-time covariance functions. This is an important and further significant step for choosing a class of models. In this paper a method for testing positive and negative non-separability is given; moreover, an approach for testing some well known classes of space-time covariance function models has been proposed. The performance of the tests has been shown using real and simulated data.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adler RJ (1981) The geometry of random fields. Wiley, New York, p 290

    Google Scholar 

  2. Bivand RS, Pebesma E, Gomez-Rubio V (2013) Applied spatial data analysis with R, 2nd edn. Springer, New York, p 405

    Google Scholar 

  3. Brockwell PJ, Davis RA (2006) Time series: theory and methods, 2nd edn. Springer, New York, p 577

    Google Scholar 

  4. Brown PE, Karesen KF, Roberts GO, Tonellato S (2000) Blur-generated non-separable space-time models. J R Stat Soc Ser B 62(4):847–860

    Article  Google Scholar 

  5. Cichota R, Hurtado ALB, de Jong van Lier Q (2006) Spatio-temporal variability of soil water tension in a tropical soil in Brazil. Geoderma 133(3–4):231–243

    Article  Google Scholar 

  6. Christakos G (2011) Integrative problem-solving in a time of decadence. Springer, New York, p 555

    Google Scholar 

  7. Cressie N, Huang H (1999) Classes of nonseparable spatio-temporal stationary covariance functions. JASA 94(448):1330–1340

    Article  Google Scholar 

  8. De Cesare L, Myers DE, Posa D (2002) FORTRAN programs for space-time modeling. Comput Geosci 28:205–212

    Article  Google Scholar 

  9. De Iaco S, Myers DE, Posa D (2001) Space-time analysis using a general product-sum model. Stat Probab Lett 52(1):21–28

    Article  Google Scholar 

  10. De Iaco S, Myers DE, Posa D (2002) Nonseparable space-time covariance models: some parametric families. Math Geol 34(1):23–42

    Article  Google Scholar 

  11. De Iaco S, Myers D, Posa D (2011) On strict positive definiteness of product and product-sum covariance models. J Stat Plan Infer 141(3):1132–1140

    Article  Google Scholar 

  12. De Iaco S, Posa D (2013) Positive and negative non-separability for space-time covariance models. J Stat Plan Infer 143(2):378–391

    Article  Google Scholar 

  13. De Iaco S, Posa D (2017) Strict positive definiteness in geostatistics. Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-017-1432-x

    Google Scholar 

  14. De Iaco S, Palma M, Posa D (2016) A general procedure for selecting a class of fully symmetric space-time covariance functions. Environmentrics 27(4):212–224

    Article  Google Scholar 

  15. De Iaco S, Cappello C, Posa P (2017) Covatest: tests on properties of space-time covariance functions. R package version 0.2.1. https://CRAN.R-project.org/package=covatest

  16. de Luna X, Genton MG (2005) Predictive spatio-temporal models for spatially sparse environmental data. Stat Sinica 15:547–568

    Google Scholar 

  17. Dimitrakopoulos R, Luo X (1994) Spatiotemporal modeling: covariances and ordinary kriging systems. Geostatistics for the next century. Kluwer, Dordrecht, pp 88–93

    Google Scholar 

  18. Fuentes M (2006) Testing for separability of spatio-temporal covariance functions. J Stat Plan Infer 136(2):447–466

    Article  Google Scholar 

  19. Genton MG (2007) Separable approximations of space-time covariance matrices. Environmentrics 18:681–695

    Article  Google Scholar 

  20. Genton MG, Koul HL (2008) Minimum distance inference in unilateral autoregressive lattice processes. Stat Sinica 18(2):617–631

    Google Scholar 

  21. Gething PW, Atkinson PM, Noor AM, Gikandi PW, Hay SI, Nixon MS (2007) A local space-time kriging approach applied to a national outpatient malaria data set. Comput Geosci 33:1337–1350

    Article  Google Scholar 

  22. Gneiting T (2002) Nonseparable, stationary covariance functions for space-time data. JASA 97(458):590–600

    Article  Google Scholar 

  23. Gneiting T, Genton MG, Guttorp P (2007) Geostatistical space-time models, stationarity, separability and full symmetry. In: Finkenstadt B, Held L, Isham V (eds) Statistical methods for spatio-temporal systems. Chapman & Hall/CRC, Boca Raton, pp 151–175

    Google Scholar 

  24. Gräler B, Gerharz L, Pebesma E (2012) Spatio-temporal analysis and interpolation of PM10 measurements in Europe. ETC/ACM Technical Paper 2011/10; Released: 2012/01/30

  25. Gräler B, Pebesma EJ, Heuvelink G (2015) Spatio-temporal Geostatistics using Gstat Institute for Geoinformatics, University of Munster. http://CRAN.R-project.org/package=gstat

  26. Guo JH, Billard L (1998) Some inference results for causal autoregressive processes on a plane. J Time Ser Anal 19:681–691

    Article  Google Scholar 

  27. Ibragimov IA, Linnik IIV (1971) Independent and stationary sequences of random variables. Wolters-Noordhoff Publishing, Gronigen, p 443p

    Google Scholar 

  28. Harville DA (2001) Matrix algebra from a statistician’s perspective. Springer, Berlin, p 635

    Google Scholar 

  29. Hall P, Horowitz JL, Jing BY (1995) On blocking rules for the bootstrap with dependent data. Biometrika 82:561–574

    Article  Google Scholar 

  30. Haslett J, Raftery AE (1989) Space-time modelling with long-memory dependence: assessing Ireland’s wind power resource. Appl Statist 38:1–50

    Article  Google Scholar 

  31. Hristopulos DT, Tsantili IC (2016) Space-time models based on random fields with local interactions. Int J Mod Phys B 30(15):1541007

    Article  Google Scholar 

  32. Jost GT, Heuvelink GBM, Papritz A (2005) Analysing the space-time distribution of soil water storage of a forest ecosystem using spatio-temporal kriging. Geoderma 128:258–273

    Article  Google Scholar 

  33. Journel A (1989) Fundamentals of Geostatistics in Five Lessons, American Geophysical Union, short Courses in Geology

  34. Kolovos A, Christakos G, Hristopulos DT, Serre ML (2004) Methods for generating non-separable spatiotemporal covariance models with potential environmental applications. Adv Water Resour 27(8):815–830

    CAS  Article  Google Scholar 

  35. Lahiri SN (2003) Resampling methods for dependent data. Springer, New York

    Google Scholar 

  36. Lee PC, Talbott EO, Roberts JM (2012) Ambient air pollution exposure and blood pressure changes during pregnancy. Environ Res 117:46–53

    CAS  Article  Google Scholar 

  37. Liang D, Kumar N (2013) Time-space Kriging to address the spatiotemporal misalignment in the large datasets. Atmosph Environ 72:60–69

    CAS  Article  Google Scholar 

  38. Li B, Genton MG, Sherman M (2007) A nonparametric assessment of properties of space-time covariance functions. J Am Stat Assoc 102(478):736–744

    CAS  Article  Google Scholar 

  39. Li B, Genton MG, Sherman M (2008a) On the asymptotic joint distribution of sample space-time covariance estimators. Bernoulli 14(1):228–248

    Article  Google Scholar 

  40. Li B, Genton MG, Sherman M (2008b) Testing the covariance structure of multivariate random fields. Biometrika 95(4):813–829

    Article  Google Scholar 

  41. Lobato IN (2001) Testing that a dependent process is uncorrelated. JASA 96(455):1066–1076

    Article  Google Scholar 

  42. Ma C (2002) Spatio-temporal covariance functions generated by mixtures. Math Geol 34(8):965–975

    Article  Google Scholar 

  43. Ma C (2003) Families of spatio-temporal stationary covariance models. J Stat Plan Infer 116(2):489–501

    Article  Google Scholar 

  44. Ma C (2008) Recent developments on the construction of spatio-temporal covariance models. Stoch Environ Res Risk Assess 22(1):39–47

    Article  Google Scholar 

  45. Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic Press, New York, p 521p

    Google Scholar 

  46. Mateu J, Porcu E, Gregori P (2007) Recent advances to model anisotropic space-time data. Stat Methods Appl 17(2):209–223

    Article  Google Scholar 

  47. Matsuda Y, Yajima Y (2004) On testing for separable correlations of multivariate time series. J Time Ser Anal 25(4):501–528

    Article  Google Scholar 

  48. Mitchell M, Genton MG, Gumpertz M (2005) Testing for separability of space-time covariances. Environmetrics 16:819–831

    Article  Google Scholar 

  49. Mitchell MW, Genton MG, Gumpertz ML (2006) A likelihood ratio test for separability of covariances. J Multivar Anal 97:1025–1043

    Article  Google Scholar 

  50. Pebesma EJ (2012) spacetime: Spatio-temporal data in R. J Stat Softw 51(7):1–30, http://www.jstatsoft.org/v51/i07/

  51. Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30(7):683–691. doi:10.1016/j.cageo.2004.03.012

    Article  Google Scholar 

  52. Politis DN, Romano JP, Wolf M (1999) Subsampling. Springer, New York

    Google Scholar 

  53. Porcu E, Gregori P, Mateu J (2006) Nonseparable stationary anisotropic space-time covariance functions. Stoch Environ Res Risk Asses 21(2):113–122

    Article  Google Scholar 

  54. Porcu E, Gregori P, Mateu J (2007) La descente et la montée étendues: the spatially d-anisotropic and spatio-temporal case. Stoch Environ Res Risk Asses 21(6):683–693

    Article  Google Scholar 

  55. Porcu E, Mateu J, Saura F (2008) New classes of covariance and spectral density functions for spatio-temporal modelling. Stoch Environ Res Risk Assess 22:65–79

    Article  Google Scholar 

  56. Posa D (1993) A simple description of spatio-temporal processes. Comput Stat Data Anal 15(4):425–437

    Article  Google Scholar 

  57. Rodrigues A, Diggle PJ (2010) A class of convolution-based models for spatio-temporal processes with non-separable covariance structure. Scand J Stat 37(4):553–567

    Article  Google Scholar 

  58. Scaccia L, Martin RJ (2005) Testing axial symmetry and separability of lattice processes. J Stat Plan Infer 131:19–39

    Article  Google Scholar 

  59. Shao X, Li B (2009) A tuning parameter free test for properties of space-time covariance functions. J Stat Plan Infer 139(12):4031–4038

    Article  Google Scholar 

  60. Sherman M (1996) Variance estimation for statistics computed from spatial lattice data. J R Stat Soc Ser B 58:509–523

    Google Scholar 

  61. Sherman M (2011) Spatial Statistics and Spatio-Temporal Data. Covariance functions and directional properties. Wiley, Chichester, p 294

    Google Scholar 

  62. Shitan M, Brockwell P (1995) An asymptotic test for separability of a spatial autoregressive model. Commun Stat Theory Methods 24(8):2027–2040

    Article  Google Scholar 

  63. Stein ML (1986) A simple model for spatial-temporal processes. Water Resour Res 22(13):2107–2110

    Article  Google Scholar 

  64. Stein ML (2005) Space-time covariance functions. JASA 100:310–321

    CAS  Article  Google Scholar 

  65. Zeng Z, Lei L, Hou S (2014) Regional gap-filling method based on spatiotemporal variogram model of \(CO_2\) columns. IEEE Trans Geosci Remote Sens 52(6):3594–3603

    Article  Google Scholar 

  66. Zhang H, Zimmerman DL (2005) Towards reconciling two asymptotic frameworks in spatial statistics. Biometrika 92:921–936

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor and the reviewers for their helpful suggestions and comments. This research has been partially supported by the Cassa di Risparmio di Puglia Foundation (grant given to the authors on 2014).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. De Iaco.

Appendices

Appendix 1: Test for the type of non-separability

If the non-separability assumption is reasonable, the type of non-separability have to be investigated through the following steps:

  1. 1.

    Estimation of the space-time covariance surface (\(\widehat{C}({\mathbf{h}},u)\) for a set of space-time lags \(({\mathbf{h}},u)\)) and of the corresponding empirical space-time correlation function (\(\widehat{\rho }({\mathbf{h}},u)\)).

  2. 2.

    Computation of the non-separability index ratio \(\widehat{r}({\mathbf{h}},u)\) (i.e. from definition (12), the ratio computed between the empirical space-time correlation and the product of the corresponding sample spatial and temporal marginals).

  3. 3.

    Graphical representation of the sample non-separability ratio through box-plots, classified for spatial lags and temporal lags. The inspection of box-plots could help to decide for a right tailed test (18) or a left tailed test (19).

  4. 4.

    Fix the null hypothesis, i.e. the type of the test: a right tailed test for testing the negative non-separability, a left tailed test for testing the positive non-separability.

  5. 5.

    Selection of spatial and temporal lags (\(\Lambda\)) with sample non-separability ratios much greater/less than one. The test statistic is always computed for lags characterized by the same type of non-separability, in such a way that compensations among terms of the test statistic with different signs are avoided.

  6. 6.

    Computation of the test statistic, which requires the estimation of \({\mathbf {\Sigma }}, \widehat{{\mathbf {G}}}, {\mathbf {f}}(\widehat{{\mathbf {G}}})\) and the construction of the contrast matrix A (Li et al. 2007), and of the corresponding p value.

  7. 7.

    If the p value associated with the test statistic is less than 0.05 the null hypothesis is rejected.

As explained in Li et al. (2007), De Iaco et al. (2016), the analyst can compute the tests on a set of spatial and temporal lags chosen on the basis of different reasons. In general, the analyst can start with few pairs of spatial locations (spatial lags), which are spread out over the domain and are representative of the spatio-temporal correlation of the data set. In some empirical cases, the selection of the pairs of spatial locations might be based on intrinsic characteristics of the phenomenon under study (some examples for wind data are in the above mentioned papers). Moreover, the lags or pairs of locations can be chosen by taking into account the pairs of points with the smallest or, alternatively, with the largest ratio between the east-west component and the north-south component of the spatial lag, as well as the pairs of points with the shortest distance \(\Vert {\mathbf{h}}\Vert\). Regarding the temporal lags, it is common to use short temporal lags characterized by strong correlation. In addition to the above mentioned insights, the analyst can select, for the test on the type on non-separability, spatial and temporal lags for which the sample non-separability ratios are much greater/less than one. For this aim, an useful support is given by the inspection of box-plots of the sample non-separability ratios, classified by spatial and temporal lags.

Appendix 2: Proof of Proposition 4.1

Given \(d({\mathbf{h}}_1,u_2)=C({\mathbf {h}}_1, u_2)C({\mathbf {0}}, 0) - C({\mathbf {h}}_1, 0)C({\mathbf {0}}, u_2)\), it is easy to show that

$$\begin{aligned} d({\mathbf{h}}_i,u_j)={\sigma ^4\over 4}[\rho _{s,1}({\mathbf{h}}_i)-\rho _{s,2}({\mathbf{h}}_i) ][\rho _{t,1}(u_j)-\rho _{t,2}(u_j)], \qquad i,j=1,2. \end{aligned}$$
(57)

Then for any set of spatial lags \({\mathbf {h}}_1\) and \({\mathbf {h}}_2\) and temporal lags \(u_1\) and \(u_2\) the following properties are satisfied:

$$\begin{aligned}&{d({\mathbf {h}}_1,u_1) \over {d({\mathbf {h}}_2, u_1) }}- {d({\mathbf {h}}_1,u_2) \over {d({\mathbf {h}}_2, u_2) }} =0, \qquad \forall \, u_1, u_2, \end{aligned}$$
(58)
$$\begin{aligned}&{d({\mathbf {h}}_1,u_1) \over {d({\mathbf {h}}_1, u_2) }}- {d({\mathbf {h}}_2,u_1) \over {d({\mathbf {h}}_2, u_2) }}=0, \qquad \forall \, {\mathbf {h}}_1,{\mathbf {h}}_2. \end{aligned}$$
(59)

Appendix 3: Proof of Proposition 4.2

Part 1 (if)

For the proof, consider that because of (28) the following properties are satisfied for any set of spatial lags \({\mathbf {h}}_1\), \({\mathbf {h}}_2\), and \({\mathbf {h}}_3\)

$$\begin{aligned}&\gamma ({\mathbf {h}}_1,u)-\gamma ({\mathbf {h}}_2, u)=[\gamma ({\mathbf {h}}_1,0) - \gamma ({\mathbf {h}}_2,0)][1-k\gamma ({\mathbf {0}},u)], \qquad \forall \, u, \end{aligned}$$
(60)
$$\begin{aligned}&\gamma ({\mathbf {h}}_3,u)-\gamma ({\mathbf {h}}_2,u)=[\gamma ({\mathbf {h}}_3,0) - \gamma ({\mathbf {h}}_2,0)][1-k\gamma ({\mathbf {0}},u)], \qquad \forall \, u, \end{aligned}$$
(61)

or equivalently

$$\begin{aligned} {\gamma ({\mathbf {h}}_3,u)-\gamma ({\mathbf {h}}_2,u) \over {\gamma ({\mathbf {h}}_3,0) - \gamma ({\mathbf {h}}_2,0)}}- {\gamma ({\mathbf {h}}_1,u)-\gamma ({\mathbf {h}}_2,u) \over {\gamma ({\mathbf {h}}_1,0) - \gamma ({\mathbf {h}}_2,0)}}=0, \qquad \forall \, u. \end{aligned}$$
(62)

Recalling the relationship between \(\gamma\) and C, the expression (62) can be rewritten as:

$$\begin{aligned} {C({\mathbf {h}}_3,u)-C({\mathbf {h}}_2,u) \over {C({\mathbf {h}}_3,0) - C({\mathbf {h}}_2,0)}}- {C({\mathbf {h}}_2,u)-C({\mathbf {h}}_1,u) \over {C({\mathbf {h}}_2,0) - C({\mathbf {h}}_1,0)}}=0, \qquad \forall \, u. \end{aligned}$$
(63)

Analogously, for the proof of the property in (30).

Part 2 (only if)

Let C be a space-time covariance function. The ratio of increments in (29), where the spatial marginal \(C({\mathbf {h}} ,0)\) is interpreted as an independent variable, is constant with respect to this last variable and depends solely on u. This implies that the space-time covariance C is a linear function of the spatial marginal. Analogously, the incremental ratio in (30), where the temporal marginal \(C(\mathbf 0 ,u)\) is interpreted as an independent variable, is constant with respect to this last variable and depends solely on \({\mathbf {h}}\). This implies that the space-time covariance function C is a linear function of the temporal marginal. In conclusion, the space-time covariance function C is a linear function of both marginals, thus the most general form that ensures this feature is given by the construction (27).

Appendix 4: Test for some classes of covariance function models

The appropriateness of a class of space-time covariance function models can be investigated through the following steps:

  1. 1.

    Estimation of the space-time covariance surface (\(\widehat{C}({\mathbf{h}},u)\) for a set of space-time lags \(({\mathbf{h}},u)\)) and of the corresponding empirical space-time correlation function (\(\widehat{\rho }({\mathbf{h}},u)\)).

  2. 2.

    Fix the class of models to be tested on the basis of empirical evidences (such as type of non-separability, behavior at the origin and to infinity) and the corresponding null hypothesis.

  3. 3.

    Selection of spatial and temporal lags (\(\Lambda\)). Note that the integrated product, Gneiting and Cressie class of models have to be tested at least on one triplet of spatial lags \({\mathbf {h}}_{i_1}, {\mathbf {h}}_{i_2}, {\mathbf {h}}_{i_3}\), such that \(||{\mathbf {h}}_{i_1}||^{2\gamma }- ||{\mathbf {h}}_{i_2}||^{2\gamma } = ||{\mathbf {h}}_{i_2}||^{2\gamma }-||{\mathbf {h}}_{i_3}||^{2\gamma }\), \({i_1}\ne {i_2}\ne {i_3}\) or at least on one triplets of temporal lags \({u}_{j_1}, {u}_{j_2}, {u}_{j_3}\), such that \(u_{j_1}^{2\alpha }-u_{j_2}^{2\alpha }=u_{j_2}^{2\alpha }-u_{j_3}^{2\alpha }\), \({j_1}\ne {j_2}\ne {j_3}\).

  4. 4.

    Computation of the test statistic which requires the estimation of \({\mathbf {\Sigma }}, \widehat{{\mathbf {G}}}, {\mathbf {f}}(\widehat{{\mathbf {G}}})\) and the construction of the contrast matrix A (Li et al. 2007).

  5. 5.

    If the p value associated with the test statistic is less than 0.05 the null hypothesis is rejected.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cappello, C., De Iaco, S. & Posa, D. Testing the type of non-separability and some classes of space-time covariance function models. Stoch Environ Res Risk Assess 32, 17–35 (2018). https://doi.org/10.1007/s00477-017-1472-2

Download citation

Keywords

  • Space-time random field
  • Space-time covariance
  • Non-separability
  • Type of non-separability test
  • Test on covariance function models