Effects of convective-diffusive vertical mixing on the conception of rectangular settling basins

  • Martin Sanchez
Short Communication


Collection efficiency η of rectangular settling basins is studied in this note for two cases: (i) with no mixing and (ii) with perfect vertical mixing. At first, well known reference solutions corresponding to suspended solids with constant settling velocity are presented. The effects on deposition of suspended solids with varying settling velocities are then studied. Finally, original exact solutions for η are obtained for gamma distributed settling velocities. The reference solutions are perfectly compatible with these more general solutions.


Settling basin Gamma distributed settling velocity Quiescent waters Turbulent mixing 


  1. Bahadori A, Clark M, Boyd B (2013) Essentials of water systems design in the oil, gas, and chemical processing industries. Springer Briefs in Applied Sciences and Technology, 102 p. doi: 10.1007/978-1-4614-6516-4
  2. Belinsky M, Rubin H, Agnon Y, Kit E, Atkinson JF (2005) Characteristics of resuspension, settling and diffusion of particulate matter in a water column. Environ Fluid Mech 5(5):415–441. doi: 10.1007/s10652-004-7302-3 CrossRefGoogle Scholar
  3. Burt TN (1986) Field settling velocities of estuary muds. In: Mehta AJ (ed) Estuarine cohesive sediment dynamics. Springer, Berlin, pp 126–150. doi: 10.1007/978-1-4612-4936-8_7
  4. Camp TR (1946) Sedimentation and the design of settling tanks. Trans ASCE 111:895–936Google Scholar
  5. Chancelier JP, Cohen de Lara M, Pacard F (1997) A stochastic approach to model bottom boundary conditions and compute efficiency in a settling tank. Stoch Hydrol Hydraul 11(6):449–457. doi: 10.1007/BF02428428 CrossRefGoogle Scholar
  6. Chebbo G (1992) Solids in urban wet weather discharges: characterization and treatment. PhD thesis, ENPC, Paris. (in French)Google Scholar
  7. Corazza MZ, Abrão T, Lepri FG, Gimenez SMN, Oliveira E, Santos MJ (2012) Monte Carlo method applied to modeling copper transport in river sediments. Stoch Env Res Risk Assess 26(8):1063–1079. doi: 10.1007/s00477-012-0564-2 CrossRefGoogle Scholar
  8. Cripps SJ, Bergheim A (2000) Solids management and removal for intensive land-based aquaculture production systems. Aquacult Eng 22(1):33–56. doi: 10.1016/S0144-8609(00)00031-5 CrossRefGoogle Scholar
  9. Deleersnijder E, Beckers JM, Delhez EJM (2006) The residence time of settling particles in the surface mixed layer. Environ Fluid Mech 6(1):25–42. doi: 10.1007/s10652-005-3941-2 CrossRefGoogle Scholar
  10. Easly DH, Tung YK (1988) Evaluation of flow probabilities in run-off detention ponds. Stoch Hydrol Hydraul 2(3):239–244. doi: 10.1007/BF01550844 CrossRefGoogle Scholar
  11. Janssen RHA (2009) Efficiency of sediment settling basins. In: Zhang C, Tang H (ed) Advances in water resources and hydraulic engineering, pp 2025–2030. Springer, Berlin. doi: 10.1007/978-3-540-89465-0_347
  12. Jones SE, Jago CF (1996) Determination of settling velocity in the Elbe estuary using quisset tubes. J Sea Res 36(1–2):63–67. doi: 10.1016/S1385-1101(96)90772-8 Google Scholar
  13. Kafi-Benyahia M (2006) Variabilité spatiale des caractéristiques et des origines des polluants de temps de pluie dans le réseau d’assainissement unitaire parisien. PhD thesis, ENPC, Paris. (in French)Google Scholar
  14. Kranck K (1986) Settling behavior of cohesive sediment. In: Mehta AJ (ed) Estuarine cohesive sediment dynamics. Springer, Berlin, pp 151–169. doi: 10.1007/978-1-4612-4936-8_8
  15. Kranck K, Milligan TG (1985) Origin of grain size spectra of suspension deposited sediment. Geo-Mar Lett 5(1):61–66. doi: 10.1007/BF02629800 CrossRefGoogle Scholar
  16. Kranck K, Milligan TG (1992) Characteristics of suspended particles at an 11-hour anchor station in San Francisco Bay, California. J Geophys Res 97:11373–11382. doi: 10.1029/92JC00950 CrossRefGoogle Scholar
  17. Migniot C (1989) Tassement et rhéologie des vases. La Houille Blanche 1:11–29CrossRefGoogle Scholar
  18. Sahoo GB, Schladow SG, Reuter JE, Coats R (2011) Effects of climate change on thermal properties of lakes and reservoirs, and possible implications. Stoch Env Res Risk Assess 25(4):445–456. doi: 10.1007/s00477-010-0414-z CrossRefGoogle Scholar
  19. Sanchez M (2006) Settling velocity of the suspended sediment in three high-energy environments. Ocean Eng 33(5–6):665–678. doi: 10.1016/j.oceaneng.2005.05.009 CrossRefGoogle Scholar
  20. Sanchez M, Grimigni P, Delanoë Y (2005) Steady-state vertical distribution of cohesive sediments in a flow. CR Geosci 337(3):357–365. doi: 10.1016/j.crte.2004.10.020 CrossRefGoogle Scholar
  21. Simons, Li and Associates Inc (1982) Design manual for sedimentation control through sedimentation ponds and other physical/chemical treatment. Department of the Interior, Office of Surface Mining, Washington, DCGoogle Scholar
  22. Spiegel MR (1975) Theory and problems of probability and statistics. McGraw-Hill, New-York, p 372Google Scholar
  23. Svarovsky L (2000) Solid–liquid separation, 4th edn. Butterworth-Heinemann Publishing, Oxford, p 554Google Scholar
  24. Yan H, Lipeme Kouyi G, Gonzalez-Merchan C, Becouze-Lareure C, Sebastian C, Barraud S, Bertrand-Krajewski J-L (2014) Computational fluid dynamics modelling of flow and particulate contaminants sedimentation in an urban stormwater detention and settling basin. Environ Sci Pollut Res 21(8):5347–5356. doi: 10.1007/s11356-013-2455-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.University of NantesNantes Cedex 3France

Personalised recommendations