Skip to main content
Log in

Nonparametric geostatistical risk mapping

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

In this work, a fully nonparametric geostatistical approach to estimate threshold exceeding probabilities is proposed. To estimate the large-scale variability (spatial trend) of the process, the nonparametric local linear regression estimator, with the bandwidth selected by a method that takes the spatial dependence into account, is used. A bias-corrected nonparametric estimator of the variogram, obtained from the nonparametric residuals, is proposed to estimate the small-scale variability. Finally, a bootstrap algorithm is designed to estimate the unconditional probabilities of exceeding a threshold value at any location. The behavior of this approach is evaluated through simulation and with an application to a real data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cameletti M, Ignaccolo R, Sylvan D (2013) Assessment and visualization of threshold exceedance probabilities in complex space-time settings: a case study of air quality in northern italy. Spat Stat 5:57–68

    Article  Google Scholar 

  • Chilès J, Delfiner P (2012) Geostatistics: modeling spatial uncertainty, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Cressie N (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Draghicescu D, Ignaccolo R et al (2009) Modeling threshold exceedance probabilities of spatially correlated time series. Electron J Stat 3:149–164

    Article  Google Scholar 

  • Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Chapman and Hall, London

    Google Scholar 

  • Fernández-Casal R (2016) npsp: nonparametric spatial (geo)statistics. http://cran.r-project.org/package=npsp, R package version 0.5-3

  • Fernández-Casal R, Francisco-Fernández M (2014) Nonparametric bias-corrected variogram estimation under non-constant trend. Stoch Environ Res Risk Assess 28(5):1247–1259

    Article  Google Scholar 

  • Fernández-Casal R, González-Manteiga W, Febrero-Bande M (2003) Space-time dependency modeling using general classes of flexible stationary variogram models. J Geophys Res 108:8779

    Article  Google Scholar 

  • Francisco-Fernández M, Opsomer JD (2005) Smoothing parameter selection methods for nonparametric regression with spatially correlated errors. Can J Stat 33:539–558

    Article  Google Scholar 

  • Francisco-Fernández M, Quintela-Del-Río A, Fernández-Casal R (2011) Nonparametric methods for spatial regression—an application to seismic events. Environmetrics 23:85–93

    Article  Google Scholar 

  • Franks SW, Kuczera G (2002) Flood frequency analysis: evidence and implications of secular climate variability, new south wales. Water Resour Res 38(5):20-1–20-7

    Article  Google Scholar 

  • García-Soidán P, Menezes R (2012) Estimation of the spatial distribution through the kernel indicator variogram. Environmetrics 23:535–548

    Article  Google Scholar 

  • García-Soidán PH, González-Manteiga W, Febrero-Bande M (2003) Local linear regression estimation of the variogram. Stat Probab Lett 64:169–179

    Article  Google Scholar 

  • Goovaerts P, Webster R, Dubois JP (1997) Assessing the risk of soil contamination in the swiss jura using indicator geostatistics. Environ Ecol Stat 4(1):49–64

    Article  Google Scholar 

  • Guardiola-Albert C, Pardo-Igúzquiza E (2011) Compositional bayesian indicator estimation. Stoch Environ Res Risk Assess 25(6):835–849

    Article  Google Scholar 

  • Journel A (1983) Nonparametric estimation of spatial distributions. Math Geol 15(3):445–468

    Article  Google Scholar 

  • Krzysztofowicz R, Sigrest AA (1997) Local climatic guidance for probabilistic quantitative precipitation forecasting. Mon Weather Rev 125(3):305–316

    Article  Google Scholar 

  • Lark R, Ferguson R (2004) Mapping risk of soil nutrient deficiency or excess by disjunctive and indicator kriging. Geoderma 118:39–53

    Article  CAS  Google Scholar 

  • Li W, Zhang C, Dey D, Wang S (2010) Estimating threshold-exceeding probability maps of environmental variables with markov chain random fields. Stoch Environ Res Risk Assess 24(8):1113–1126

    Article  Google Scholar 

  • Liu X (2001) Kernel smoothing for spatially correlated data. PhD thesis, Department of Statistics, Iowa State University

  • Neuman SP, Jacobson EA (1984) Analysis of nonintrinsic spatial variability by residual kriging with application to regional groundwater levels. Math Geol 16:499–521

    Article  Google Scholar 

  • Oliver MA, Webster R, Mcgrath SP (1996) Disjunctive kriging for environmental management. Environmetrics 7(3):333–357

    Article  Google Scholar 

  • Opsomer JD, Wang Y, Yang Y (2001) Nonparametric regression with correlated errors. Stat Sci 16:134–153

    Article  Google Scholar 

  • Shapiro A, Botha JD (1991) Variogram fitting with a general class of conditionally nonnegative definite functions. Comput Stat Data Anal 11(1):87–96

    Article  Google Scholar 

  • Tolosana-Delgado R, Pawlowsky-Glahn V, Egozcue JJ (2008) Indicator kriging without order relation violations. Math Geosci 40(3):327–347

    Article  Google Scholar 

  • Wand MP, Jones MC (1995) Kernel smoothing. Chapman and Hall, London

    Book  Google Scholar 

Download references

Acknowledgements

The research of Rubén Fernández-Casal and Mario Francisco-Fernández has been partially supported by the Consellería de Cultura, Educación e Ordenación Universitaria of the Xunta de Galicia through the agreement for the Singular Research Center CITIC, and by Grant MTM2014-52876-R. The research of Sergio Castillo has been partially supported by the Universidad de las Fuerzas Armadas ESPE, from Ecuador. The authors thank the associate editor and two referees for constructive comments that improved the presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Francisco-Fernández.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Casal, R., Castillo-Páez, S. & Francisco-Fernández, M. Nonparametric geostatistical risk mapping. Stoch Environ Res Risk Assess 32, 675–684 (2018). https://doi.org/10.1007/s00477-017-1407-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1407-y

Keywords

Navigation