Clustering misaligned dependent curves applied to varved lake sediment for climate reconstruction

  • Konrad Abramowicz
  • Per Arnqvist
  • Piercesare Secchi
  • Sara Sjöstedt de Luna
  • Simone VantiniEmail author
  • Valeria Vitelli
Original Paper


In this paper we introduce a novel functional clustering method, the Bagging Voronoi K-Medoid Aligment (BVKMA) algorithm, which simultaneously clusters and aligns spatially dependent curves. It is a nonparametric statistical method that does not rely on distributional or dependency structure assumptions. The method is motivated by and applied to varved (annually laminated) sediment data from lake Kassjön in northern Sweden, aiming to infer on past environmental and climate changes. The resulting clusters and their time dynamics show great potential for seasonal climate interpretation, in particular for winter climate changes.


Functional data Clustering Dependence Misalignment Sediment data 



The authors would like to thank Christian Bigler for valuable comments and discussions. This work was supported by the Swedish Research Council, project D0520301.


  1. Arnqvist P, Bigler C, Renberg I, Sjostedt de Luna S (2016) Functional clustering of varved lake sediment to reconstruct past seasonal climate. J Environ Ecol Stat (351). doi: 10.1007/s10651-016-0351-1
  2. Beniston M (2005) Warm winter spells in the Swiss Alps: strong heat waves in a cold season? A study focusing on climate observations at the Saentis high mountain site. Geophys Res Lett 32(1)Google Scholar
  3. Comas C, Mehtätalo L, Miina J (2013) Analysing spacetime tree interdependencies based on individual tree growth functions. Stoch Environ Res Risk Assess 27(7):1673–1681CrossRefGoogle Scholar
  4. Dabo-Niang S, Yao AF, Pischedda L, Cuny P, Gilbert F (2010) Spatial mode estimation for functional random fields with application to bioturbation problem. Stoch Environ Res Risk Assess 24(4):487–497CrossRefGoogle Scholar
  5. Fernández-Pascual R, Espejo R, Ruiz-Medina M (2015) Moment and bayesian wavelet regression from spatially correlated functional data. Stoch Environ Res Risk Assess 30:523–557CrossRefGoogle Scholar
  6. Finazzi F, Haggarty R, Miller C, Scott M, Fasso A (2015) A comparison of clustering approaches for the study of the temporal coherence of multiple time series. Stoch Environ Res Risk Assess 29:463–475CrossRefGoogle Scholar
  7. Gaffney SJ, Smyth P (2004) Joint probabilistic curve clustering and alignment. In: Advances in neural information processing systems, pp 473–480Google Scholar
  8. Giraldo R, Delicado P, Mateu J (2012) Hierarchical clustering of spatially correlated functional data. Stat Neerl 66(4):403–421CrossRefGoogle Scholar
  9. Ignaccolo R, Ghigo S, Giovenali E (2008) Analysis of air quality monitoring networks by functional clustering. Environmetrics 19(7):672–686CrossRefGoogle Scholar
  10. Ignaccolo R, Mateu J, Giraldo R (2014) Kriging with external drift for functional data for air quality monitoring. Stoch Environ Res Risk Assess 28(5):1171–1186CrossRefGoogle Scholar
  11. Leijonhufvud L, Wilson R, Moberg A, Söderberg J, Retsö D, Söderlind U (2010) Five centuries of Stockholm winter/spring temperatures reconstructed from documentary evidence and instrumental observations. Clim Change 101(1–2):109–141CrossRefGoogle Scholar
  12. Liu X, Müller HG (2004) Functional convex averaging and synchronization for time-warped random curves. J Am Stat Assoc 99(467):687–699CrossRefGoogle Scholar
  13. Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA 105(36):13252–13257CrossRefGoogle Scholar
  14. Menafoglio A, Secchi P, Guadagnini A (2016) A class-kriging predictor for functional compositions with application to particle-size curves in heterogeneous aquifers. Math Geosci 48(4):463–485Google Scholar
  15. Menafoglio A, Guadagnini A, Secchi P (2014) A kriging approach based on Aitchison geometry for the characterization of particle-size curves in heterogeneous aquifers. Stoch Environ Res Risk Assess 28(7):1835–1851CrossRefGoogle Scholar
  16. Ojala AE, Alenius T (2005) 10000 years of interannual sedimentation recorded in the Lake Nautajärvi (Finland) clastic-organic varves. Palaeogeogr, Palaeoclimatol, Palaeoecol 219(3):285–302CrossRefGoogle Scholar
  17. Ojala AE, Alenius T, Seppä H, Giesecke T (2008) Integrated varve and pollen-based temperature reconstruction from Finland: evidence for Holocene seasonal temperature patterns at high latitudes. Holocene 18(4):529–538CrossRefGoogle Scholar
  18. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK, Edenhofer O, Elgizouli I, Field CB, Forster P, Friedlingstein P, Fuglestvedt J, Gomez-Echeverri L, Hallegatte S, Hegerl G, Howden M, Jiang K, Cisneroz BJ, Kattsov V, Lee H, Mach KJ, Marotzke J, Mastrandrea MD, Meyer L, Minx J, Mulugetta Y, O’Brien K, Oppenheimer M, Pereira JJ, Pichs-Madruga R, Plattner GK, Pörtner HO, Power SB, Preston B, Ravindranath NH, Reisinger A, Riahi K, Rusticucci M, Scholes R, Seyboth K, Sokona Y, Stavins R, Stocker TF, Tschakert P, van Vuuren D, van Ypserle JP (2014) Climate change 2014: synthesis report. contribution of working groups I, II and III to the 5th assessment report of the intergovernmental panel on Climate Change. IPCC, Geneva, SwitzerlandGoogle Scholar
  19. Petterson G (1999) Image analysis, varved lake sediments and climate reconstruction. Ph.D thesis, Umeå UniversityGoogle Scholar
  20. Petterson G, Renberg I, Geladi P, Lindberg A, Lindgren F (1993) Spatial uniformity of sediment accumulation in varved lake sediments in northern Sweden. J Paleolimnol 9(3):195–208CrossRefGoogle Scholar
  21. Petterson G, Odgaard B, Renberg I (1999) Image analysis as a method to quantify sediment components. J Paleolimnol 22(4):443–455CrossRefGoogle Scholar
  22. Petterson G, Renberg I, Sjöstedt-de Luna S, Arnqvist P, Anderson NJ (2010) Climatic influence on the inter-annual variability of late-Holocene minerogenic sediment supply in a boreal forest catchment. Earth Surf Process Landf 35(4):390–398Google Scholar
  23. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  24. Ramsay J, Silverman B (2005) Functional data analysis. Springer, New YorkCrossRefGoogle Scholar
  25. Romano E, Balzanella A, Verde R (2010) Classification as a tool for research. In: Proceedings of the 11th IFCS Biennial conference and 33rd annual conference of the Gesellschaft für Klassifikation e.V., Dresden, March 13-18, 2009, Springer, Heidelberg, chap clustering spatio-functional data: a model based approach, pp 167–175Google Scholar
  26. Romano E, Mateu J, Giraldo R (2015) On the performance of two clustering methods for spatial functional data. AStA Adv Stat Anal 99(4):467–492CrossRefGoogle Scholar
  27. Salazar E, Giraldo R, Porcu E (2015) Spatial prediction for infinite-dimensional compositional data. Stoch Environ Res Risk Assess 29(7):1737–1749CrossRefGoogle Scholar
  28. Sangalli LM, Secchi P, Vantini S, Vitelli V (2010a) Functional clustering and alignment methods with applications. Commun Appl Ind Math 1(1):205–224Google Scholar
  29. Sangalli LM, Secchi P, Vantini S, Vitelli V (2010b) K-mean alignment for curve clustering. Comput Stat Data Anal 54(5):1219–1233CrossRefGoogle Scholar
  30. Sangalli LM, Secchi P, Vantini S (2014) Analysis of aneurisk65 data: k-mean alignment. Electron J Stat 8(2):1891–1904CrossRefGoogle Scholar
  31. Secchi P, Vantini S, Vitelli V (2011) Spatial clustering of functional data. In: Recent advances in functional data analysis and related topics, Springer, New York, pp 283–289Google Scholar
  32. Secchi P, Vantini S, Vitelli V (2013) Bagging Voronoi classifiers for clustering spatial functional data. Int J Appl Earth Obs Geoinf 22:53–64CrossRefGoogle Scholar
  33. Segerström U, Renberg I, Wallin JE (1984) Annual sediment accumulation and land use history; investigations of varved lake sediments. Verh int Ver Limnol 22:1396–1403Google Scholar
  34. Stephens M (2000) Dealing with label switching in mixture models. J R Stat Soc 62(4):795–809CrossRefGoogle Scholar
  35. Tarpey T, Kinateder KK (2003) Clustering functional data. J Classif 20(1):093–114CrossRefGoogle Scholar
  36. Tiljander M, Saarnisto M, Ojala AE, Saarinen T (2003) A 3000-year palaeoenvironmental record from annually laminated sediment of Lake Korttajarvi, central Finland. Boreas 32(4):566–577CrossRefGoogle Scholar
  37. Vantini S (2012) On the definition of phase and amplitude variability in functional data analysis. Test 21(4):676–696CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Mathematical StatisticsUmeå UniversityUmeåSweden
  2. 2.MOX - Department of MathematicsPolitecnico di MilanoMilanItaly
  3. 3.Department of Biostatistics, Oslo Center for Biostatistics and EpidemiologyUniversity of OsloOsloNorway

Personalised recommendations