Advertisement

Birnbaum–Saunders spatial modelling and diagnostics applied to agricultural engineering data

  • Fabiana Garcia-Papani
  • Miguel Angel Uribe-Opazo
  • Victor Leiva
  • Robert G. Aykroyd
Original Paper

Abstract

Applications of statistical models to describe spatial dependence in geo-referenced data are widespread across many disciplines including the environmental sciences. Most of these applications assume that the data follow a Gaussian distribution. However, in many of them the normality assumption, and even a more general assumption of symmetry, are not appropriate. In non-spatial applications, where the data are uni-modal and positively skewed, the Birnbaum–Saunders (BS) distribution has excelled. This paper proposes a spatial log-linear model based on the BS distribution. Model parameters are estimated using the maximum likelihood method. Local influence diagnostics are derived to assess the sensitivity of the estimators to perturbations in the response variable. As illustration, the proposed model and its diagnostics are used to analyse a real-world agricultural data set, where the spatial variability of phosphorus concentration in the soil is considered—which is extremely important for agricultural management.

Keywords

Asymmetric distributions Local influence Matérn model Maximum likelihood methods Monte Carlo simulation Non-normality R software Spatial data analysis 

Notes

Acknowledgments

The authors thank the Editors and anonymous referees for their constructive comments on an earlier version of the manuscript, which resulted in this improved version. We are grateful to Carolina Brianezi-Melchior, who translated this work into English, from its original Portuguese. This research work was partially supported by CNPq Grants from the Brazilian Government, and by FONDECYT 1120879 Grant from the Chilean Government.

References

  1. Anderson J, Hardy E, Roach J, Witmer R (1976). A land use and land cover classification system for use with remote sensor data. Technical Report Paper 964. US Geological Survey Professional, Washington, DCGoogle Scholar
  2. Assumpção R, Uribe-Opazo M, Galea M (2011) Local influence for spatial analysis of soil physical properties and soybean yield using Student-t distribution. Rev Bras Ciênc Solo 35:1917–1926CrossRefGoogle Scholar
  3. Assumpção R, Uribe-Opazo M, Galea M (2014) Analysis of local influence in geostatistics using Student-t distribution. J Appl Stat 41:2323–2341CrossRefGoogle Scholar
  4. Azzalini A, Capitanio A (1999) Statistical applications of the multivariate skew-normal distribution. J R Stat Soc B 61:579–602CrossRefGoogle Scholar
  5. Birnbaum Z, Saunders S (1969) A new family of life distributions. J Appl Probab 6:319–327CrossRefGoogle Scholar
  6. Borssoi J, De Bastiani F, Uribe-Opazo M, Galea M (2011) Local influence of explanatory variables in Gaussian spatial linear models. Chil J Stat 2:29–38Google Scholar
  7. Cambardella C, Moorman T, Novak J, Parkin T, Karlen D, Turco R, Konopka A (1994) Field-scale variability of soil properties in central Iowa soils. Soil Sci Soc Am J 58:1501–1511CrossRefGoogle Scholar
  8. COAMO/COODETEC (2001) Soil fertility and plant nutrition. Technical report. Cooperativa Agropecuaria Mouraoense Ltda./Development Center Technological and Economic Cooperative Ltda. (COAMO/COODETEC), Cascavel, BrazilGoogle Scholar
  9. Cook R (1987) Influence assessment. J Appl Stat 14:117–131CrossRefGoogle Scholar
  10. Davis D (1952) An analysis of some failure data. J Am Stat Assoc 47:113–150CrossRefGoogle Scholar
  11. De Bastiani F, Cysneiros A, Uribe-Opazo M, Galea M (2015) Influence diagnostics in elliptical spatial linear models. TEST 24:322–340CrossRefGoogle Scholar
  12. Diggle P, Ribeiro P (2007) Model-based geostatistics. Springer, New YorkGoogle Scholar
  13. EMBRAPA (2009) Brazilian system of soil classification. Technical report. Brazilian Enterprise for National Agricultural Research/Centre of Soil Research (EMBRAPA/CPI), Rio de Janeiro, BrazilGoogle Scholar
  14. Ferreira M, Gomes M, Leiva V (2012) On an extreme value version of the Birnbaum–Saunders distribution. Revstat Stat J 10:181–210Google Scholar
  15. Galea M, Leiva V, Paula G (2004) Influence diagnostics in log-Birnbaum–Saunders regression models. J Appl Stat 31:1049–1064CrossRefGoogle Scholar
  16. Gimenez P, Galea M (2013) Influence measures on corrected score estimators in functional heteroscedastic measurement error models. J Multivar Anal 114:1–15CrossRefGoogle Scholar
  17. Grzegozewski D, Uribe-Opazo M, De Bastiani F, Galea M (2013) Local influence when fitting Gaussian spatial linear models: an agriculture application. Ciênc Investig Agrár 40:235–252Google Scholar
  18. Isaaks E, Srivastava R (1989) An introduction to applied geostatistics. Oxford University Press, OxfordGoogle Scholar
  19. Johnson N, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1. Wiley, New YorkGoogle Scholar
  20. Johnson N, Kotz S, Balakrishnan N (1995) Continuous univariate distributions, vol 2. Wiley, New YorkGoogle Scholar
  21. Kendrick D (2002) Stochastic control for economic models. McGraw Hill, New YorkGoogle Scholar
  22. Krige D (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metall Min Soc S Afr 52:119–139Google Scholar
  23. Krippendorff K (2004) Content analysis: an introduction to its methodology. Sage, Thousand OaksGoogle Scholar
  24. Lange K (2001) Numerical analysis for statisticians. Springer, New YorkGoogle Scholar
  25. Lange K, Little J, Taylor M (1989) Robust statistical modeling using the \(t\) distribution. J Am Stat Assoc 84:881–896Google Scholar
  26. Leiva V, Barros M, Paula G, Sanhueza A (2008) Generalized Birnbaum–Saunders distribution applied to air pollutant concentration. Environmetrics 19:235–249CrossRefGoogle Scholar
  27. Leiva V, Sanhueza A, Angulo JM (2009) A length-biased version of the Birnbaum–Saunders distribution with application in water quality. Stoch Environ Res Risk Assess 23:299–307CrossRefGoogle Scholar
  28. Leiva V, Rojas E, Galea M, Sanhueza A (2014) Diagnostics in Birnbaum–Saunders accelerated life models with an application to fatigue data. Appl Stoch Models Bus Ind 30:115–131CrossRefGoogle Scholar
  29. Leiva V, Marchant C, Ruggeri F, Saulo H (2015a) A criterion for environmental assessment using Birnbaum–Saunders attribute control charts. Environmetrics 26:463–476CrossRefGoogle Scholar
  30. Leiva V, Tejo M, Guiraud P, Schmachtenberg O, Orio P, Marmolejo F (2015b) Modeling neural activity with cumulative damage distributions. Biol Cybern 109:421–433CrossRefGoogle Scholar
  31. Leiva V, Ferreira M, Gomes M, Lillo C (2016a) Extreme value Birnbaum–Saunders regression models applied to environmental data. Stoch Environ Res Risk Assess. doi: 10.1007/s00477-015-1069-6 Google Scholar
  32. Leiva V, Liu S, Shi L, Cysneiros F (2016b) Diagnostics in elliptical regression models with stochastic restrictions applied to econometrics. J Appl Stat 43:627–642CrossRefGoogle Scholar
  33. Leiva V, Santos-Neto M, Cysneiros F, Barros M (2016c) A methodology for stochastic inventory models based on a zero-adjusted Birnbaum–Saunders distribution. Appl Stoch Models Bus Ind 32:74–89CrossRefGoogle Scholar
  34. Liu S, Leiva V, Ma T, Welsh A (2016) Influence diagnostic analysis in the possibly heteroskedastic linear model with exact restrictions. Stat Methods Appl. doi: 10.1007/s10260-015-0329-4
  35. Marchant C, Leiva V, Cavieres M, Sanhueza A (2013) Air contaminant statistical distributions with application to PM10 in Santiago, Chile. Rev Environ Contam Toxicol 223:1–31Google Scholar
  36. Marchant C, Leiva V, Cysneiros F (2016) A multivariate log-linear model for Birnbaum–Saunders distributions. IEEE Trans Reliab. doi: 10.1109/TR.2015.2499964 Google Scholar
  37. Mardia K, Marshall R (1984) Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 71:135–146CrossRefGoogle Scholar
  38. Militino A, Palacius M, Ugarte M (2006) Outliers detection in multivariate spatial linear models. J Stat Plan Inference 136:125–146CrossRefGoogle Scholar
  39. Muirhead R (1982) Aspects of multivariate statistical theory. Wiley, New YorkCrossRefGoogle Scholar
  40. Müller W, Stehlík M (2009) Issues in the optimal design of computer simulation experiments. Appl Stoch Models Bus Ind 25:163–177CrossRefGoogle Scholar
  41. Müller W, Stehlík M (2010) Compound optimal spatial designs. Environmetrics 21:354–364CrossRefGoogle Scholar
  42. Nocedal J, Wright S (1999) Numerical optimization. Springer, New YorkCrossRefGoogle Scholar
  43. Ortega E, Bolfarine H, Paula G (2003) Influence diagnostics in generalized log-gamma regression models. Comput Stat Data Anal 42:165–186CrossRefGoogle Scholar
  44. Podlaski R (2008) Characterization of diameter distribution data in near-natural forests using the Birnbaum–Saunders distribution. Can J For Res 18:518–527CrossRefGoogle Scholar
  45. R-Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  46. Rieck J, Nedelman J (1991) A log-linear model for the Birnbaum–Saunders distribution. Technometrics 3:51–60Google Scholar
  47. Saulo H, Leiva V, Ziegelmann F, Marchant C (2013) A nonparametric method for estimating asymmetric densities based on skewed Birnbaum–Saunders distributions applied to environmental data. Stoch Environ Res Risk Assess 27:1479–1491CrossRefGoogle Scholar
  48. Uribe-Opazo M, Borssoi J, Galea M (2012) Influence diagnostics in Gaussian spatial linear models. J Appl Stat 39:615–630CrossRefGoogle Scholar
  49. Vilca F, Sanhueza A, Leiva V, Christakos G (2010) An extended Birnbaum–Saunders model and its application in the study of environmental quality in Santiago, Chile. Stoch Environ Res Risk Assess 24:771–782CrossRefGoogle Scholar
  50. Villegas C, Paula G, Leiva V (2011) Birnbaum–Saunders mixed models for censored reliability data analysis. IEEE Trans Reliab 60:748–758CrossRefGoogle Scholar
  51. Waller L, Gotway C (2004) Applied spatial statistics for public health data. Wiley, HobokenCrossRefGoogle Scholar
  52. Xia J, Zeephongsekul P, Packer D (2011) Spatial and temporal modelling of tourist movements using semi-Markov processes. Tour Manag 51:844–851CrossRefGoogle Scholar
  53. Zhu H, Ibrahim J, Lee S, Zhang H (2007) Perturbation selection and influence measures in local influence analysis. Ann Stat 35:2565–2588CrossRefGoogle Scholar
  54. Zhu H, Lee S (2001) Local influence for incomplete-data models. J R Stat Soc B 63:111–126CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Fabiana Garcia-Papani
    • 1
  • Miguel Angel Uribe-Opazo
    • 1
  • Victor Leiva
    • 2
  • Robert G. Aykroyd
    • 3
  1. 1.Postgraduate Program in Agricultural Engineering, Centre of Exact Sciences and TechnologyUniversidade Estadual do Oeste do ParanáCascavelBrazil
  2. 2.Faculty of Engineering and SciencesUniversidad Adolfo IbáñezViña del MarChile
  3. 3.Department of StatisticsUniversity of LeedsLeedsUK

Personalised recommendations