A GIS tool for spatiotemporal modeling under a knowledge synthesis framework

  • Hwa-Lung YuEmail author
  • Shang-Chen Ku
  • Alexander Kolovos
Original Paper


In recent years, there has been a fast growing interest in the space–time data processing capacity of Geographic Information Systems (GIS). In this paper we present a new GIS-based tool for advanced geostatistical analysis of space–time data; it combines stochastic analysis, prediction, and GIS visualization technology. The proposed toolbox is based on the Bayesian Maximum Entropy theory that formulates its approach under a mature knowledge synthesis framework. We exhibit the toolbox features and use it for particulate matter spatiotemporal mapping in Taipei, in a proof-of-concept study where the serious preferential sampling issue is present. The proposed toolbox enables tight coupling of advanced spatiotemporal analysis functions with a GIS environment, i.e. QGIS. As a result, our contribution leads to a more seamless interaction between spatiotemporal analysis tools and GIS built-in functions; and utterly enhances the functionality of GIS software as a comprehensive knowledge processing and dissemination platform.


Spatiotemporal analysis Stochastic processes Prediction BME QGIS 



This research is partially supported by funds from National Science Council of Taiwan (NSC101-2628-E-002-017-MY3, NSC102-2221-E-002-140-MY3), and a fund from National Taiwan University (NTU-101R7844).


  1. Akita Y, Serre M (2009) BMEGUI user manual. Department of Environmental Sciences and Enginnering, School of Public Health, University of North CarolinaGoogle Scholar
  2. Baz I, Geymen A, Er SN (2009) Development and application of GIS-based analysis/synthesis modeling techniques for urban planning of Istanbul Metropolitan Area. Adv Eng Softw 40(2):128–140CrossRefGoogle Scholar
  3. Bennett ND, Croke BFW, Guariso G, Guillaume JHA, Hamilton SH, Jakeman AJ, Marsili-Libelli S, Newham LTH, Norton JP, Perrin C, Pierce SA, Robson B, Seppelt R, Voinov AA, Fath BD, Andreassian V (2013) Characterising performance of environmental models. Environ Model Softw 40:1–20CrossRefGoogle Scholar
  4. Bivand RS, Pebesma EJ, Gómez-Rubio V (2008) Applied spatial data analysis with R. Springer, New YorkGoogle Scholar
  5. Bogaert P, Christakos G, Jerrett M, Yu HL (2009) Spatiotemporal modelling of ozone distribution in the State of California. Atmos Environ 43(15):2471–2480CrossRefGoogle Scholar
  6. Câmara G, Vinhas L, Ferreira KR, deQueiroz GR, Souza RCMD, Monteiro AMV, Carvalho MTD, Casanova MA, deFreitas UM (2008) TerraLib: an open source gis library for large-scale environmental and socio-economic applications. In: Hall B, Leahy MG (eds) Open source approaches in spatial data handling. Springer, BerlinGoogle Scholar
  7. Chiles J-P, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New YorkCrossRefGoogle Scholar
  8. Choi KM, Yu HL, Wilson ML (2008) Spatiotemporal statistical analysis of influenza mortality risk in the State of California during the period 1997–2001. Stoch Env Res Risk Assess 22:S15–S25CrossRefGoogle Scholar
  9. Christakos G (1990) A Bayesian/maximum-entropy view to the spatial estimation problem. Math Geol 22(7):763–776CrossRefGoogle Scholar
  10. Christakos G (1992) Random field models in earth sciences. Academic Press Inc, San DiegoGoogle Scholar
  11. Christakos G (2000) Modern spatiotemporal geostatistics. Oxford Univ. Press, New YorkGoogle Scholar
  12. Christakos G (2002) On the assimilation of uncertain physical knowledge bases: Bayesian and non-Bayesian techniques. Adv Water Resour 25(8–12):1257–1274CrossRefGoogle Scholar
  13. Christakos G (2010) Integrative problem-solving in a time of decadence. Springer, New YorkGoogle Scholar
  14. Christakos G, Hristopulos DT (1998) Spatiotemporal environmental health modelling: a tractatus stochasticus. Kluwer Academic, BostonCrossRefGoogle Scholar
  15. Christakos G, Serre ML (2000a) BME analysis of spatiotemporal particulate matter distributions in North Carolina. Atmos Environ 34(20):3393–3406CrossRefGoogle Scholar
  16. Christakos G, Serre ML (2000b) Spatiotemporal analysis of environmental exposure-health effect associations. J Expo Anal Environ Epidemiol 10(2):168–187CrossRefGoogle Scholar
  17. Christakos G, Bogaert P, Serre ML (2002) Temporal GIS: advanced functions for field-based applications. Springer-Verlag, New YorkGoogle Scholar
  18. Christakos G, Olea RA, Serre ML, Yu H-L, Wang L (2005) Interdisciplinary public health reasoning and epidemic modelling: the case of black death. Springer-Verlag, New YorkGoogle Scholar
  19. Chuang M-T, Chiang P-C, Chan C-C, Wang C-F, Chang EE, Lee C-T (2008) The effects of synoptical weather pattern and complex terrain on the formation of aerosol events in the Greater Taipei area. Sci Total Environ 399(1–3):128–146CrossRefGoogle Scholar
  20. Clark V (2004) SAS/STAT 9.1 user’s guide, In: Institute, S. (Ed.). SAS Pub: Cary, N.C., p. 7 v. ill. 28 cmGoogle Scholar
  21. Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on Loess. J Off Stat 6(1):3–73Google Scholar
  22. Cressie N (1985) Fitting variogram models by weighted least-squares. J Int Assoc Math Geol 17(5):563–586CrossRefGoogle Scholar
  23. Cressie N, Huang HC (1999) Classes of nonseparable, spatio-temporal stationary covariance functions. J Am Stat Assoc 94(448):1330–1340CrossRefGoogle Scholar
  24. Dahal KR, Chow TE (2014) A GIS toolset for automated partitioning of urban lands. Environ Model Softw 55:222–234CrossRefGoogle Scholar
  25. Deutsch CV, Journel AG (1998) GSLIB geostatistical software library and user’s guide, 2.0, 2nd ed. Oxford University Press, New York, p 1 (computer laser optical disc) Google Scholar
  26. Diggle P (1990) Time series: a biostatistical introduction. Oxford University Press, OxfordGoogle Scholar
  27. Diggle PJ, Menezes R, Su TL (2010) Geostatistical inference under preferential sampling. J R Stat Soc Ser C 59:191–232CrossRefGoogle Scholar
  28. Gebberta S, Pebesma E (2014) A temporal GIS for field based environmental modeling. Environ Model Softw 53:1–12CrossRefGoogle Scholar
  29. Goodchild ME (2003) Geographic information science and systems for environmental management. Annu Rev Environ Resour 28:493–519CrossRefGoogle Scholar
  30. Goodchild MF, Haining RP (2004) GIS and spatial data analysis: converging perspectives. Papers in Regional Science 83(1):363–385CrossRefGoogle Scholar
  31. Goodchild MF, Yuan M, Cova TJ (2007) Towards a general theory of geographic representation in GIS. Int J Geogr Inf Sci 21(3):239–260CrossRefGoogle Scholar
  32. Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New YorkGoogle Scholar
  33. Hardisty F, Peuquet DJ, Robinson AC, Xu S, Stehle S (2012) STempo: finding patterns in space-time events. In: The 108th annual meeting of the Association of American Geographers, New YorkGoogle Scholar
  34. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95CrossRefGoogle Scholar
  35. Jian XD, Olea RA, Yu YS (1996) Semivariogram modeling by weighted least squares. Comput Geosci 22(4):387–397CrossRefGoogle Scholar
  36. Johnston K (2004) ArcGIS 9. Using ArcGIS geostatistical analyst. ESRI, RedlandsGoogle Scholar
  37. Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, LondonGoogle Scholar
  38. Johnson SG (2015) The NLopt nonlinear-optimization package. Accessed 23 May 2015
  39. Kitanidis PK, Shen KF (1996) Geostatistical interpolation of chemical concentration. Adv Water Resour 19(6):369–378CrossRefGoogle Scholar
  40. Kolovos A, Christakos G, Hristopulos DT, Serre ML (2004) On certain classes of non-separable spatiotemporal covariance models. Adv Water Resour 27:815–830Google Scholar
  41. Kolovos A, Skupin A, Jerrett M, Christakos G (2010) Multi-perspective analysis and spatiotemporal mapping of air pollution monitoring data. Environ Sci Technol 44(17):6738–6744. doi: 10.1021/es1013328
  42. Kolovos A, Angulo JM, Modis K, Papantonopoulos G, Wang J-F, Christakos G (2013) Model-driven development of covariances for spatiotemporal environmental health assessment. Environ Monit Assess 185(1):815–831. doi: 10.1007/s10661-012-2593-1
  43. Kyriakidis PC, Journel AG (1999) Geostatistical space-time models: a review. Math Geol 31(6):651–684CrossRefGoogle Scholar
  44. Li L, Revesz P (2004) Interpolation methods for spatio-temporal geographic data. Comput Environ Urban Syst 28:201–227CrossRefGoogle Scholar
  45. Liu SC, Shiu C-J (2001) Asian dust storms and their impact on the air quality of Taiwan. Aerosol Air Qual Res 1(1):1–8Google Scholar
  46. Maceachren AM, Wachowicz M, Edsall R, Haug D, Masters R (1999) Constructing knowledge from multivariate spatiotemporal data: integrating geographical visualization with knowledge discovery in database methods. Int J Geogr Inf Sci 13(4):311–334CrossRefGoogle Scholar
  47. Maguire DJ, Batty M, Goodchild MF (2005) GIS, spatial analysis, and modeling, 1st edn. ESRI Press, RedlandsGoogle Scholar
  48. Matejicek L, Engst P, Janour Z (2006) A GIS-based approach to spatio-temporal analysis of environmental pollution in urban areas: a case study of Prague’s environment extended by LIDAR data. Ecol Model 199(3):261–277CrossRefGoogle Scholar
  49. Neteler M, Bowman MH, Landa M, Metz M (2012) GRASS GIS: a multi-purpose open source GIS. Environ Model Softw 31:124–130CrossRefGoogle Scholar
  50. Obe R, Hsu L (2011) PostGIS in action. Manning, GreenwichGoogle Scholar
  51. Olea RA (2007) Declustering of clustered preferential sampling for histogram and semivariogram inference. Math Geol 39(5):453–467CrossRefGoogle Scholar
  52. Pardo-Iguzquiza E (1999) VARFIT: a fortran-77 program for fitting variogram models by weighted least squares. Comput Geosci 25(3):251–261CrossRefGoogle Scholar
  53. Pebesma E (2012) Spacetime: spatio-temporal data in R. J Stat Softw 51(7):1–30CrossRefGoogle Scholar
  54. Peuquet DJ (2002) Representations of space and time. Guilford Press, New YorkGoogle Scholar
  55. Pierce FJ, Clay D (2007) GIS applications in agriculture. CRC Press, Boca RatonGoogle Scholar
  56. Powell MJD (2009) The BOBYQA algorithm for bound constrained optimization without derivatives, technical report. Department of Applied Mathematics and Theoretical Physics, CambridgeGoogle Scholar
  57. Pultar E, Cova TJ, Yuan M, Goodchild MF (2010) EDGIS: a dynamic GIS based on space time points. Int J Geogr Inf Sci 24(3):329–346CrossRefGoogle Scholar
  58. QGIS Development Team (2012) Quantum GIS 1.8 geographic information system API documentation. Open Source Geospatial Foundation ProjectGoogle Scholar
  59. Reed SE, Boggs JL, Mann JP (2012) A GIS tool for modeling anthropogenic noise propagation in natural ecosystems. Environ Model Softw 37:1–5CrossRefGoogle Scholar
  60. Rempt B (2001) Python’s PyQt toolkit. Dr Dobbs J 26(1):88Google Scholar
  61. Rey SJ, Janikas MV (2006) STARS: space-time analysis of regional systems. Geographical Analysis 38(1):67–86CrossRefGoogle Scholar
  62. Schmitz O, Karssenberg D, van Deursen WPA, Wesseling CG (2009) Linking external components to a spatio-temporal modelling framework: coupling MODFLOW and PCRaster. Environ Model Softw 24(9):1088–1099CrossRefGoogle Scholar
  63. Sherman M (2011) Spatial statistics and spatio-temporal data: covariance functions and directional properties. Wiley, ChichesterGoogle Scholar
  64. Taylor J, Lai KM, Davies M, Clifton D, Ridley I, Biddulph P (2011) Flood management: prediction of microbial contamination in large-scale floods in urban environments. Environ Int 37(5):1019–1029CrossRefGoogle Scholar
  65. Vallejos RO, Fabre NN, Batista VD, Acosta J (2013) The application of a general time series model to floodplain fisheries in the Amazon. Environ Model Softw 48:202–212CrossRefGoogle Scholar
  66. Van Der Knijff JM, Younis J, De Roo APJ (2010) LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood simulation. Int J Geogr Inf Sci 24(2):189–212CrossRefGoogle Scholar
  67. van der Walt S, Colbert SC, Varoquaux G (2011) The NumPy Array: a structure for efficient numerical computation. Comput Sci Eng 13(2):22–30CrossRefGoogle Scholar
  68. Venigalla MM, Baik BH (2007) GIS-based engineering management service functions: taking GIS beyond mapping for municipal governments. Journal of Computing in Civil Engineering 21(5):331–342CrossRefGoogle Scholar
  69. Vijay R, Satapathy DR, Nimje B, Nema S, Dhurve S, Gupta A (2009) Development of GIS-based environmental information system: an Indian scenario. International Journal of Digital Earth 2(4):382–392CrossRefGoogle Scholar
  70. Wackernagel H (2003) Multivariate geostatistics: an introduction with applications, 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  71. Wang XD, Zhong XH, Gao P (2010) A GIS-based decision support system for regional eco-security assessment and its application on the Tibetan Plateau. J Environ Manag 91(10):1981–1990CrossRefGoogle Scholar
  72. Yanosk JD, Paciorek CJ, Schwartz J, Laden F, Puett R, Suh HH (2008) Spatio-temporal modeling of chronic PM10 exposure for the nurses’ health study. Atmos Environ 42(18):4047–4062CrossRefGoogle Scholar
  73. Yin L, Shaw SL, Yu HB (2011) Potential effects of ICT on face-to-face meeting opportunities: a GIS-based time-geographic approach. J Transp Geogr 19(3):422–433CrossRefGoogle Scholar
  74. Yu HL, Wang CH (2010) Retrospective prediction of intraurban spatiotemporal distribution of PM2.5 in Taipei. Atmos Environ 44(25):3053–3065CrossRefGoogle Scholar
  75. Yu H-L, Kolovos A, Christakos G, Chen J-C, Warmerdam S, Dev B (2007) Interactive spatiotemporal modelling of health systems: the SEKS–GUI framework. Stoch Env Res Risk Assess 21(5):555–572CrossRefGoogle Scholar
  76. Yu H-L, Wang C-H, Wu Y-Z (2009a) An automatic approach to the mean and covariance estimations of spatiotemporal nonstationary processes, In: Pilz, J. (ed) The StatGIS Conference, MilosGoogle Scholar
  77. Yu HL, Chen JC, Christakos G, Jerrett M (2009b) BME estimation of residential exposure to ambient PM10 and ozone at multiple time scales. Environ Health Perspect 117(4):537–544CrossRefGoogle Scholar
  78. Yu H-L, Ku S-C, Yang C-H, Cheng T-J, Chen L (2011a) Assessment of areal average air quality level over irregular areas: a case study of PM10 exposure estimation in Taipei (Taiwan). In: Nejadkoorki F (ed) Advanced air pollution. InTech, RijekaGoogle Scholar
  79. Yu HL, Wang CH, Liu MC, Kuo YM (2011b) Estimation of fine particulate matter in Taipei using landuse regression and Bayesian maximum entropy methods. Int J Environ Res Public Health 8(6):2153–2169CrossRefGoogle Scholar
  80. Yu HL, Yang SJ, Yen HJ, Christakos G (2011c) A spatio-temporal climate-based model of early dengue fever warning in southern Taiwan. Stoch Env Res Risk Assess 25(4):485–494CrossRefGoogle Scholar
  81. Yu H-L, Ku S-C, Kolovos A (2012) Advanced space-time predictive analysis with STBME. In: SIGSPATIAL 2012 international conference on advances in geographic information systems proceedings, Redondo BeachGoogle Scholar
  82. Yuan M (2001) Representing complex geographic phenomena in GIS. Cartogr Geogr Inf Sci 28:83–96CrossRefGoogle Scholar
  83. Yuan M (2009) Challenges and critical issues for temporal GIS research and technologies. In: Karimi HA (ed) Handbook of Research on Geoinformatics. IGI Global, Hershey, pp 144–153CrossRefGoogle Scholar
  84. Zagouras A, Kolovos A, Coimbra CFM (2015) Objective framework for optimal distribution of solar irradiance monitoring networks. Renew Energy 80:153–165. doi: 10.1016/j.renene.2015.01.046 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Bioenvironmental Systems EngineeringNational Taiwan UniversityTaipeiTaiwan
  2. 2.SpaceTimeWorks LLCSan DiegoUSA

Personalised recommendations