Quantifying the added value of climate information in a spatio-temporal dengue model

  • Rachel LoweEmail author
  • Bernard Cazelles
  • Richard Paul
  • Xavier Rodó
Original Paper


Dengue is the world’s most important vector-borne viral disease. The dengue mosquito and virus are sensitive to climate variability and change. Temperature, humidity and precipitation influence mosquito biology, abundance and habitat, and the virus replication speed. In this study, we develop a modelling procedure to quantify the added value of including climate information in a dengue model for the 76 provinces of Thailand, from 1982–2013. We first developed a seasonal-spatial model, to account for dependency structures from 1 month to the next and between provinces. We then tested precipitation and temperature variables at varying time lags, using linear and nonlinear functional forms, to determine an optimum combination of time lags to describe dengue relative risk. Model parameters were estimated using integrated nested Laplace approximation. This approach provides a novel opportunity to perform model selection in a Bayesian framework, while accounting for underlying spatial and temporal dependency structures and linear or nonlinear functional forms. We quantified the additional variation explained by interannual climate variations, above that provided by the seasonal-spatial model. Overall, an additional 8 % of the variance in dengue relative risk can be explained by accounting for interannual variations in precipitation and temperature in the previous month. The inclusion of nonlinear functions of climate in the model framework improved the model for 79 % of the provinces. Therefore, climate forecast information could significantly contribute to a national dengue early warning system in Thailand.


Dengue Climate Spatio-temporal model Random effects Nonlinear 



The research leading to these results has received funding from the DENFREE project (Grant Agreement No. 282378) funded by the European Commission’s Seventh Framework Research Programme. RL is grateful to the STEPHI project, Daniel Simpson and Harvard Rue for valuable training and technical support in using the R-INLA package.

Conflict of interest

We declare no competing interests.


  1. Aguiar M, Paul R, Sakuntabhai A, Stollenwerk N (2014) Are we modelling the correct dataset? Minimizing false predictions for dengue fever in Thailand. Epidemiol Infect 142(11):2447–2459. doi: 10.1017/S0950268813003348
  2. Anantapreecha S, Sa-ngasang A, Sawanpanyalert P, Kurane I (2004) Annual changes of predominant dengue virus serotypes in six regional hospitals in Thailand from 1999 to 2002. Dengue Bull 28:1–6Google Scholar
  3. Arcari P, Tapper N, Pfueller S (2007) Regional variability in relationships between climate and dengue/DHF in Indonesia. Singap J Trop Geogr 28:251–272CrossRefGoogle Scholar
  4. Besag J, Green P, Higdon D, Mengersen K (1995) Bayesian computation and stochastic systems. Stat Sci 10:3–41CrossRefGoogle Scholar
  5. Bi P, Tong S, Donald K, Parton KA, Hobbs J (2001) Climate variability and the dengue outbreak in Townsville, Queensland, 1992–1993. Environ Health 1:54Google Scholar
  6. Campbell KM, Lin C, Iamsirithaworn S, Scott TW (2013) The complex relationship between weather and dengue virus transmission in Thailand. Am J Trop Med Hyg 89:1066–1080CrossRefGoogle Scholar
  7. Cazelles B, Chavez M, McMichael AJ, Hales S (2005) Nonstationary influence of El Niño on the synchronous dengue epidemics in Thailand. PLoS Med 2:313–318CrossRefGoogle Scholar
  8. Chadee DD, Williams FL, Kitron UD (2005) Impact of vector control on a dengue fever outbreak in Trinidad, West Indies, in 1998. Trop Med Int Health 10:748–754CrossRefGoogle Scholar
  9. Chen J, Carlson BE, Del Genio AD (2002) Evidence for strengthening of the tropical general circulation in the 1990s. Science 295:838–841CrossRefGoogle Scholar
  10. Chen M-J, Lin C-Y, Wu Y-T, Wu P-C, Lung S-C, Su H-J (2012) Effects of extreme precipitation to the distribution of infectious diseases in Taiwan, 1994–2008. PLoS One 7:e34651CrossRefGoogle Scholar
  11. Cheong YL, Burkart K, Leitão PJ, Lakes T (2013) Assessing weather effects on dengue disease in Malaysia. Int J Environ Res Public Health 10:6319–6334CrossRefGoogle Scholar
  12. Christophers S (1960) Aedes aegypti. The yellow fever mosquito. Its life history, bionomics and structure. Cambridge University Press, London, p 738Google Scholar
  13. Craig MH, Sharp BL, Mabaso ML, Kleinschmidt I (2007) Developing a spatial-statistical model and map of historical malaria prevalence in Botswana using a staged variable selection procedure. Int J Health Geogr 6:44CrossRefGoogle Scholar
  14. Cummings DA, Irizarry RA, Huang NE, Endy TP, Nisalak A, Ungchusak K, Burke DS (2004) Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature 427:344–347CrossRefGoogle Scholar
  15. Cummings DA, Iamsirithaworn S, Lessler JT, McDermott A, Prasanthong R, Nisalak A, Jarman RG, Burke DS, Gibbons RV (2009) The impact of the demographic transition on dengue in Thailand: insights from a statistical analysis and mathematical modeling. PLoS Med 6:e1000139CrossRefGoogle Scholar
  16. Depradine C, Lovell E (2004) Climatological variables and the incidence of dengue fever in Barbados. Int J Environ Health Res 14:429–441CrossRefGoogle Scholar
  17. Descloux E, Mangeas M, Menkes CE, Lengaigne M, Leroy A, Tehei T, Guillaumot L, Teurlai M, Gourinat A-C, Benzler J et al (2012) Climate-based models for understanding and forecasting dengue epidemics. PLoS Negl Trop Dis 6:e1470CrossRefGoogle Scholar
  18. Devine GJ, Perea EZ, Killeen GF, Stancil JD, Clark SJ, Morrison AC (2009) Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats. Proc Natl Acad Sci 106:11530–11534CrossRefGoogle Scholar
  19. Endy TP, Anderson KB, Nisalak A, Yoon I-K, Green S, Rothman AL, Thomas SJ, Jarman RG, Libraty DH, Gibbons RV (2011) Determinants of inapparent and symptomatic dengue infection in a prospective study of primary school children in Kamphaeng Phet Thailand. PLoS Negl Trop Dis 5:e975CrossRefGoogle Scholar
  20. García C, García L, Espinosa-Carreón L, Ley C (2011) Abundancia y distribución de Aedes aegypti (Diptera: Culicidae) y dispersión del dengue en Guasave Sinaloa México. Rev Biol Trop 59:1609–1619Google Scholar
  21. Gharbi M, Quenel P, Gustave J, Cassadou S, Ruche GL, Girdary L, Marrama L (2011) Time series analysis of dengue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as predictors. BMC Infect Dis 11:166CrossRefGoogle Scholar
  22. Gomes AF, Nobre AA, Cruz OG (2012) Temporal analysis of the relationship between dengue and meteorological variables in the city of Rio de Janeiro, Brazil, 2001–2009. Cad Saude Publica 28:2189–2197CrossRefGoogle Scholar
  23. Grange L, Simon-Loriere E, Sakuntabhai A, Gresh L, Paul R, Harris E (2014) Epidemiological risk factors associated with high global frequency of inapparent dengue virus infections. Front Immunol 5:280. doi: 10.3389/fimmu.2014.00280 Google Scholar
  24. Gubler DJ (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11:480–496Google Scholar
  25. Gubler DJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10:100–103CrossRefGoogle Scholar
  26. Gubler DJ (2012) The economic burden of dengue. Am J Trop Med Hyg 86:743–744CrossRefGoogle Scholar
  27. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, Hunsperger E, Kroeger A, Margolis HS, Martínez E et al (2010) Dengue: a continuing global threat. Nat Rev Microbiol 8:S7–S16CrossRefGoogle Scholar
  28. Halstead SB (2007) Dengue. Lancet 370:1644–1652CrossRefGoogle Scholar
  29. Harris I, Jones P, Osborn T, Lister D (2014) Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int J Climatol 34:623–642CrossRefGoogle Scholar
  30. Hayes JM, García-Rivera E, Flores-Reyna R, Suárez-Rangel G, Rodríguez-Mata T, Coto-Portillo R, Baltrons-Orellana R, Mendoza-Rodriguez E, DE Garay BF, Jubis-Estrada J et al (2003) Risk factors for infection during a severe dengue outbreak in El Salvador in 2000. Am J Trop Med Hyg 69:629–633Google Scholar
  31. Hii YL, Zhu H, Ng N, Ng LC, Rocklöv J (2012) Forecast of dengue incidence using temperature and rainfall. PLoS Negl Trop Dis 6:e1908CrossRefGoogle Scholar
  32. Hsieh Y-H, Chen C (2009) Turning points, reproduction number, and impact of climatological events for multi-wave dengue outbreaks. Trop Med Int Health 14:628–638CrossRefGoogle Scholar
  33. Jeefoo P, Tripathi NK, Souris M (2010) Spatio-temporal diffusion pattern and hotspot detection of dengue in Chachoengsao Province, Thailand. Int J Environ Res Public Health 8:51–74CrossRefGoogle Scholar
  34. Johansson MA, Cummings DAT, Glass GE (2009) Multi-year variability and dengue—El Niño Southern Oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Med 6:e1000168. doi: 10.1371/journal.pmed.1000168 CrossRefGoogle Scholar
  35. Kramer M (2005). R2 statistics for mixed models. In: Proceedings of the conference on applied statistics in agriculture, pp. 148–160Google Scholar
  36. Limkittikul K, Brett J, L’Azou M (2014) Epidemiological trends of dengue disease in Thailand (2000–2011): a systematic literature review. PLoS Negl Trop Dis 8:e3241CrossRefGoogle Scholar
  37. Lowe R, Bailey TC, Stephenson DB, Graham RJ, Coelho CA, Sá Carvalho M, Barcellos C (2011) Spatio-temporal modelling of climate-sensitive disease risk: towards an early warning system for dengue in Brazil. Comput Geosci 37:371–381CrossRefGoogle Scholar
  38. Lowe R, Bailey TC, Stephenson DB, Jupp TE, Graham RJ, Barcellos C, Carvalho MS (2013a) The development of an early warning system for climate-sensitive disease risk with a focus on dengue epidemics in Southeast Brazil. Stat Med 32:864–883CrossRefGoogle Scholar
  39. Lowe R, Chirombo J, Tompkins AM (2013b) Relative importance of climatic, geographic and socio-economic determinants of malaria in Malawi. Malar J 12:416CrossRefGoogle Scholar
  40. Lowe R, Barcellos C, Coelho CA, Bailey TC, Coelho GE, Graham R, Jupp T, Ramalho WM, Carvalho MS, Stephenson DB et al (2014) Dengue outlook for the World Cup in Brazil: an early warning model framework driven by real-time seasonal climate forecasts. Lancet Infect Dis 14:619–626CrossRefGoogle Scholar
  41. Magee L (1990) R 2 measures based on Wald and likelihood ratio joint significance tests. Am Stat 44:250–253Google Scholar
  42. Martins TG, Simpson D, Lindgren F, Rue, avard H (2013) Bayesian computing with INLA: new features. Comput Stat Data Anal 67:68–83CrossRefGoogle Scholar
  43. Muttitanon W, Kongthong P, Kongkanon C, Yoksan S, Nitatpattana N, Gonzales J, Barbazan P (2004) Spatial and temporal dynamics of Dengue Hemorrhagic Fever epidemics, Nakhon Pathom province, Thailand, 1997–2001. Dengue Bull 28:35–43Google Scholar
  44. Nagao Y, Koelle K (2008) Decreases in dengue transmission may act to increase the incidence of dengue hemorrhagic fever. Proc Natl Acad Sci 105:2238–2243CrossRefGoogle Scholar
  45. Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S (2014) Climate change and dengue: a critical and systematic review of quantitative modelling approaches. BMC Infect Dis 14:167CrossRefGoogle Scholar
  46. Padmanabha H, Soto E, Mosquera M, Lord C, Lounibos L (2010) Ecological links between water storage behaviors and Aedes aegypti production: implications for dengue vector control in variable climates. EcoHealth 7:78–90CrossRefGoogle Scholar
  47. Reich NG, Shrestha S, King AA, Rohani P, Lessler J, Kalayanarooj S, Yoon I-K, Gibbons RV, Burke DS, Cummings DA (2013) Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. J R Soc Interface 10:20130414CrossRefGoogle Scholar
  48. Reiter P (2014) Surveillance and control of urban dengue vectors. In: Gubler DJ, Ooi EE, Vasudevan S, Farrar J (eds) Dengue and dengue hemorrhagic fever, 2nd edn. CAB International, Wallingford, pp. 481–518Google Scholar
  49. Ritchie SA, Devine GJ (2013) Confusion, knock-down and kill of Aedes aegypti using metofluthrin in domestic settings: a powerful tool to prevent dengue transmission? Parasit. Vectors 6:1–9CrossRefGoogle Scholar
  50. Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B Stat Methodol 71:319–392CrossRefGoogle Scholar
  51. Sabin AB (1952) Research on dengue during World War II. Am J Trop Med Hyg 1:30–50Google Scholar
  52. Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Edman JD (2000) Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 37:89–101CrossRefGoogle Scholar
  53. Singhrattna N, Rajagopalan B, Kumar KK, Clark M (2005) Interannual and interdecadal variability of Thailand summer monsoon season. J Clim 18:1697–1708CrossRefGoogle Scholar
  54. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B Stat Methodol 64:583–639CrossRefGoogle Scholar
  55. Stewart-Ibarra AM, Lowe R (2013) Climate and non-climate drivers of dengue epidemics in southern coastal Ecuador. Am J Trop Med Hyg 88:971–981CrossRefGoogle Scholar
  56. Thai KT, Anders KL (2011) The role of climate variability and change in the transmission dynamics and geographic distribution of dengue. Exp Biol Med 236:944–954CrossRefGoogle Scholar
  57. Tipayamongkholgul M, Fang CT, Klinchan S, Liu CM, King CC (2009) Effects of the El Niño-Southern Oscillation on dengue epidemics in Thailand, 1996–2005. BMC Public Health 9:1–15CrossRefGoogle Scholar
  58. Tjaden NB, Thomas SM, Fischer D, Beierkuhnlein C (2013) Extrinsic incubation period of dengue: knowledge, backlog, and applications of temperature dependence. PLoS Negl Trop Dis 7:e2207CrossRefGoogle Scholar
  59. Townson H, Nathan M, Zaim M, Guillet P, Manga L, Bos R, Kindhauser M (2005) Exploiting the potential of vector control for disease prevention. Bull World Health Organ 83:942–947Google Scholar
  60. Watts D, Burke D, Harrison B, Whitmire R, Nisalak A (1987) Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 36:143–152Google Scholar
  61. Wichmann O, Yoon I-K, Vong S, Limkittikul K, Gibbons RV, Mammen MP, Ly S, Buchy P, Sirivichayakul C, Buathong R et al (2011) Dengue in Thailand and Cambodia: an assessment of the degree of underrecognized disease burden based on reported cases. PLoS Negl Trop Dis 5:e996CrossRefGoogle Scholar
  62. Wu P-C, Guo H-R, Lung S-C, Lin C-Y, Su H-J (2007) Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Trop 103:50–57CrossRefGoogle Scholar
  63. Yu H-L, Yang S-J, Yen H-J, Christakos G (2011) A spatio-temporal climate-based model of early dengue fever warning in southern Taiwan. Stoch Environ Res Risk Assess 25:485–494CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rachel Lowe
    • 1
    Email author
  • Bernard Cazelles
    • 2
    • 3
  • Richard Paul
    • 4
    • 5
  • Xavier Rodó
    • 1
    • 6
  1. 1.Climate Dynamics and Impacts UnitInstitut Català de Ciències del Clima (IC3)BarcelonaSpain
  2. 2.Unité de Modélisation Mathématique et Informatique des Systèmes ComplexesUniversité Pierre et Marie CurieParis Cedex 06France
  3. 3.Ecole Normale Supérieure, IBENS UMR 8197Eco-Evolution MathématiqueParis Cedex 05France
  4. 4.Institut PasteurUnité de la Génétique Fonctionnelle des Maladies InfectieusesParis Cedex 15France
  5. 5.Centre National de la Recherche ScientifiqueUnité de Recherche Associée 3012Paris Cedex 15France
  6. 6.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations