Advertisement

Multi-agent based modeling of spatiotemporal dynamical urban growth in developing countries: simulating future scenarios of Lianyungang city, China

  • Honghui Zhang
  • Xiaobin Jin
  • Liping Wang
  • Yinkang Zhou
  • Bangrong Shu
Original Paper

Abstract

Urbanization is the most typical form of land use/cover change, and exploration of the driving mechanism of urban growth and the prediction of its future changes are very important for achieving urban sustainable development. In view of the ability of a multi-agent system to simulate a complex spatial system and from the perspective of combining macroscopic and microscopic decision-making behaviors of agents, a spatiotemporal dynamical urban growth simulation model based on the multi-agent systems has been developed. In this model, macroscopic land use planning behaviors implemented by macroagents and microscopic land use selection behaviors autonomously generated by microagents interact within two-dimensional spatial cells. Furthermore, the urbanization process is promoted through joint decision-making by macroagents and microagents. Considering the central region of the coastal industrial city Lianyungang as the study area, we developed three target scenarios on the basis of current trends, economic development priorities, and environmental protection priorities. Moreover, the corresponding urban growth scenarios were simulated and analyzed. The simulation results show that by combining the macroscopic and microscopic decision-making behaviors of agents to simulate spatiotemporal dynamical urban growth based on the multi-agent systems, the proposed model can provide a useful spatial exploratory tool for explaining the driving mechanism of urbanization and providing decision-making support for urban management.

Keywords

Urban growth Spatiotemporal dynamical simulation Multi-agent systems Joint decision-making Scenario analysis China 

Notes

Acknowledgments

This study is supported by the National Natural Science Foundation of China (No. 41201386, 41171326, 41101546) and the Postdoctoral Science Foundation of China (No. 2012M521045). We sincerely thank two anonymous reviewers for their constructive comments and suggestions.

References

  1. Batty M, Xie Y (1994) From cells to cities. Environ Plan 21(7):31–48CrossRefGoogle Scholar
  2. Berger T (2001) Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis. Agric Econ 25(2–3):245–260CrossRefGoogle Scholar
  3. Bone C, Dragicevic S, White R (2011) Modeling-in-the-middle: bridging the gap between agent-based modeling and multi-objective decision-making for land use change. Int J Geogr Inf Sci 25(5):717–737CrossRefGoogle Scholar
  4. Bousquet F, Le Page C (2004) Multi-agent simulations and ecosystem management: a review. Ecol Model 176(3):313–332CrossRefGoogle Scholar
  5. Brazel A, Gober P, Lee SJ, Grossman-Clarke S, Zehnder J, Hedquist B, Comparri E (2007) Determinants of changes in the regional urban heat island in metropolitan Phoenix (Arizona, USA) between 1990 and 2004. Climate Res 33(2):171–182CrossRefGoogle Scholar
  6. Brown DG, Page S, Riolo R, Zellner M, Rand W (2005) Path dependence and the validation of agent-based spatial models of land use. Int J Geogr Inf Sci 19(2):153–174CrossRefGoogle Scholar
  7. Buyantuyev A, Wu J (2010) Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecol 25(1):17–33CrossRefGoogle Scholar
  8. Clarke K (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ Plan 24(2):247–261CrossRefGoogle Scholar
  9. Dai FC, Lee CF, Zhang XH (2001) GIS-based geo-environmental evaluation for urban land-use planning: a case study. Eng Geol 61(4):257–271CrossRefGoogle Scholar
  10. Ding W, Wang R, Wu D, Liu J (2013) Cellular automata model as an intuitive approach to simulate complex land-use changes: an evaluation of two multi-state land-use models in the Yellow River Delta. Stoch Environ Res Risk Assess 27(4):1–9CrossRefGoogle Scholar
  11. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK (2005) Glob consequences of land use. Science 309(5734):570–574CrossRefGoogle Scholar
  12. Grimm NB, Morgan Grove J, Pickett STA, Redman CL (2000) Integrated approaches to long-termstudies of urban ecological systems. Bioscience 50(7):571–584CrossRefGoogle Scholar
  13. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319(5864):756–760CrossRefGoogle Scholar
  14. Jenerette GD, Wu J (2001) Analysis and simulation of land-use change in the central Arizona-Phoenix region, USA. Landsc Ecol 16(7):611–626CrossRefGoogle Scholar
  15. Lempert R (2002) Agent-based modeling as organizational and public policy simulators. Proc Natl Acad Sci USA 99(Suppl 3):7195–7196CrossRefGoogle Scholar
  16. Li X, Liu X (2007) Defining agents’ behaviors to simulate complex residential development using multicriteria evaluation. J Environ Manag 85(4):1063–1075CrossRefGoogle Scholar
  17. Li X, Liu X (2008) Embedding sustainable development strategies in agent-based models for use as a planning tool. Int J Geogr Inf Sci 22(1):21–45CrossRefGoogle Scholar
  18. Li X, Yeh AG-O (2000) Modelling sustainable urban development by the integration of constrained cellular automata and GIS. Int J Geogr Inf Sci 14(2):131–152CrossRefGoogle Scholar
  19. Li X, Yeh A (2004) Data mining of cellular automata’s transition rules. Int J Geogr Inf Sci 18(8):723–744CrossRefGoogle Scholar
  20. Li X, Yang Q, Liu X (2008) Discovering and evaluating urban signatures for simulating compact development using cellular automata. Landsc Urban Plan 86(2):177–186CrossRefGoogle Scholar
  21. Li W, Wu C, Zang S (2012) Modeling urban land use conversion of Daqing City, China: a comparative analysis of “top-down” and “bottom-up” approaches. Stoch Environ Res Risk Assess 28(4):1–12Google Scholar
  22. Ligmann-Zielinska A, Jankowski P (2007) Agent-based models as laboratories for spatially explicit planning policies. Environ Plan 34(2):316–335CrossRefGoogle Scholar
  23. Ligtenberg A, Wachowicz M, Bregt AK, Beulens A, Kettenis DL (2004) A design and application of a multi-agent system for simulation of multi-actor spatial planning. J Environ Manag 72(1):43–55CrossRefGoogle Scholar
  24. Ligtenberg A, Beulens A, Kettenis D, Bregt AK, Wachowicz M (2009) Simulating knowledge sharing in spatial planning: an agent-based approach. Environ Plan 36(4):644–663CrossRefGoogle Scholar
  25. Liu J, Liu M, Tian H, Zhuang D, Zhang Z, Zhang W, Tang X, Deng X (2005) Spatial and temporal patterns of China’s cropland during 1990–2000: an analysis based on Landsat TM data. Remote Sens Environ 98(4):442–456CrossRefGoogle Scholar
  26. Liu X, Li X, Anthony G-OY (2006) Multi-agent systems for simulating spatial decision behaviors and land-use dynamics. Sci China Ser D 49(11):1184–1194CrossRefGoogle Scholar
  27. Liu X, Li X, Liu L, He J, Ai B (2008) A bottom-up approach to discover transition rules of cellular automata using ant intelligence. Int J Geogr Inf Sci 22(11–12):1247–1269CrossRefGoogle Scholar
  28. Liu X, Li X, Shi X, Zhang X, Chen Y (2010) Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata. Int J Geogr Inf Sci 24(5):783–802CrossRefGoogle Scholar
  29. Loibl W, Toetzer T (2003) Modeling growth and densification processes in suburban regions—simulation of landscape transition with spatial agents. Environ Model Softw 18(6):553–563CrossRefGoogle Scholar
  30. Luck M, Wu J (2002) A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA. Landsc Ecol 17(4):327–339CrossRefGoogle Scholar
  31. Matthews R, Gilbert N, Roach A, Polhill JG, Gotts N (2007) Agent-based land-use models: a review of applications. Landsc Ecol 22(10):1447–1459CrossRefGoogle Scholar
  32. McGarigal K, Marks BJ (1995) Spatial pattern analysis program for quantifying landscape structure. Gen Tech Rep PNW-GTR-351 US Department of Agriculture, Forest Service, Pacific Northwest Research StationGoogle Scholar
  33. Montgomery MR (2008) The urban transformation of the developing world. Science 319(5864):761–764CrossRefGoogle Scholar
  34. Pannell CW (2002) China’s continuing urban transition. Environ Plan A 34(9):1571–1590CrossRefGoogle Scholar
  35. Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93(2):314–337CrossRefGoogle Scholar
  36. Pontius RG (2000) Quantification error versus location error in comparison of categorical maps. Photogramm Eng Remote Sens 66(8):1011–1016Google Scholar
  37. Saarloos D, Arentze T, Borgers A, Timmermans H (2005) A multiagent model for alternative plan generation. Environ Plan 32(4):505–522CrossRefGoogle Scholar
  38. Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98Google Scholar
  39. Seto KC, Shepherd JM (2009) Global urban land-use trends and climate impacts. Curr Opin Environ Sustain 1(1):89–95CrossRefGoogle Scholar
  40. Tan R (2011) Reforming China’s land policy for its green target. Environment 53(6):29–33CrossRefGoogle Scholar
  41. Tan M, Li X, Xie H, Lu C (2005) Urban land expansion and arable land loss in China—a case study of Beijing–Tianjin–Hebei region. Land Use Policy 22(3):187–196CrossRefGoogle Scholar
  42. Tan R, Beckmann V, Qu F, Wu C (2012) Governing farmland conversion for urban development from the perspective of transaction cost economics. Urban Stud 49(10):2265–2283CrossRefGoogle Scholar
  43. Tian G, Yang Z, Xie Y (2007) Detecting spatiotemporal dynamic landscape patterns using remote sensing and the lacunarity index: a case study of Haikou city, China. Environ Plan 34(3):556CrossRefGoogle Scholar
  44. Tian G, Ouyang Y, Quan Q, Wu J (2011) Simulating spatiotemporal dynamics of urbanization with multi-agent systems—a case study of the Phoenix metropolitan region, USA. Ecol Model 222(5):1129–1138CrossRefGoogle Scholar
  45. Torrens PM (2006) Simulating sprawl. Ann Assoc Am Geogr 96(2):248–275CrossRefGoogle Scholar
  46. Torrens PM, Benenson I (2005) Geographic automata systems. Int J Geogr Inf Sci 19(4):385–412CrossRefGoogle Scholar
  47. Walsh SJ, Malanson GP, Entwisle B, Rindfuss RR, Mucha PJ, Heumann BW, McDaniel PM, Frizzelle BG, Verdery AM, Williams NE (2013) Design of an agent-based model to examine population–environment interactions in Nang Rong District, Thailand. Appl Geogr 39:183–198CrossRefGoogle Scholar
  48. Wu F (2002) Calibration of stochastic cellular automata: the application to rural-urban land conversions. Int J Geogr Inf Sci 16(8):795–818CrossRefGoogle Scholar
  49. Wu J (2008) Making the case for landscape ecology an effective approach to urban sustainability. Landsc J 27(1):41–50CrossRefGoogle Scholar
  50. Wu F, Webster CJ (1998) Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environ Plan 25(1):103–126CrossRefGoogle Scholar
  51. Wu D, Liu J, Wang S, Wang R (2010) Simulating urban expansion by coupling a stochastic cellular automata model and socioeconomic indicators. Stoch Environ Res Risk Assess 24(2):235–245CrossRefGoogle Scholar
  52. Xie Y, Fan S (2012) Multi-city sustainable regional urban growth simulation—MSRUGS: a case study along the mid-section of Silk Road of China. Stoch Environ Res Risk Assess 28(4):1–13Google Scholar
  53. Xie Y, Batty M, Zhao K (2007a) Simulating emergent urban form using agent-based modeling: desakota in the Suzhou-Wuxian region in China. Ann Assoc Am Geogr 97(3):477–495CrossRefGoogle Scholar
  54. Xie Y, Fang C, Lin G, Gong H, Qiao B (2007b) Tempo-spatial patterns of land use changes and urban development in globalizing China: a study of Beijing. Sensors 7(11):2881–2906CrossRefGoogle Scholar
  55. Yue W, Fan P, Wei YD, Qi J (2012a) Economic development, urban expansion, and sustainable development in Shanghai. Stoch Environ Res Risk Assess 28(4):1–17Google Scholar
  56. Yue W, Liu Y, Fan P, Ye X, Wu C (2012b) Assessing spatial pattern of urban thermal environment in Shanghai, China. Stoch Environ Res Risk Assess 26(7):899–911CrossRefGoogle Scholar
  57. Zhang H, Zeng Y, Bian L (2010a) Simulating multi-objective spatial optimization allocation of land use based on the integration of multi-agent system and genetic algorithm. Int J Environ Res 4(4):765–776Google Scholar
  58. Zhang H, Zeng Y, Bian L, Yu X (2010b) Modelling urban expansion using a multi agent-based model in the city of Changsha. J Geogr Sci 20(4):540–556CrossRefGoogle Scholar
  59. Zhang X, Fang C, Wang Z, Ma H (2013) Urban construction land suitability evaluation based on improved multi-criteria evaluation based on GIS (MCE-GIS): case of New Hefei City. China. Chin Geogr Sci 23(6):740–753CrossRefGoogle Scholar
  60. Zhong T, Zhang X, Huang X (2009) Simulation of farmer decision on land use conversions using decision tree method in Jiangsu Province, China. Span J Agric Res 7(3):687–698CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Honghui Zhang
    • 1
    • 2
  • Xiaobin Jin
    • 1
  • Liping Wang
    • 1
  • Yinkang Zhou
    • 1
  • Bangrong Shu
    • 3
  1. 1.School of Geographic and Oceanographic Sciences of Nanjing UniversityNanjingChina
  2. 2.Changsha planning information centerChangshaChina
  3. 3.Department of Land ResourcesSchool of Geodesy and Geomatics, Jiangsu Normal UniversityXuzhouChina

Personalised recommendations