Application of the Ordered Weighted Averaging (OWA) method to the Caspian Sea conflict

  • Hojjat MianabadiEmail author
  • Majid Sheikhmohammady
  • Erik Mostert
  • Nick Van de Giesen
Original Paper


This study proposes a promising allocation mechanism of the Caspian Sea natural resources, which are presently shared among five countries. To date, these nations have been unable to reach an allocation agreement. We apply a methodology to propose the most appropriate solution under different risk attitudes of the states. This research is different from other studies regarding the Caspian Sea negotiations in that it employs risk-based fuzzy multi attribute decision making methods for simulating the risk attitudes or optimism/pessimism degrees of the decision makers. The ordered weighted averaging (OWA) approach, which considers the optimism/pessimism degree quantitatively, is used to take into account the effects of different risk attitudes of the negotiators on the final outcome. We demonstrate how one could obtain a range of alternatives under different multi attribute and risk attitudes. The induced OWA (IOWA) method is also used to determine the relative power of these states bordering the Caspian Sea by considering several attributes, including different risk attitudes of agents. Results indicate that taking into account the risk attitude (prone, neutral, averse) of the states can affect the overall ranking of the proposed solutions. The findings from this study may facilitate negotiation regarding the most preferred allocation mechanism for the Caspian Sea.


Conflict management Fuzzy multi criteria decision making Ordered Weighted Averaging (OWA) Risk attitude Caspian Sea 


  1. Ben-Arieh D (2005) Sensitivity of multi-criteria decision making to linguistic quantifiers and aggregation means. Comput Ind Eng 48:289–309. doi: 10.1016/j.cie.2005.01.014 CrossRefGoogle Scholar
  2. Bodily SE (1985) Modern decision making: a guide to modeling with decision support systems. McGraw-Hill, New YorkGoogle Scholar
  3. Brams SJ, Kilgour DM (2001) Fallback bargaining. Gr Decis Negot 10:287–316. doi: 10.1023/A:1011252808608 CrossRefGoogle Scholar
  4. Central Intelligence Agency (CIA) (2001) Oil and gas infrastructure in the Caspian Sea and Black Sea Regions 2001. Accessed 10 Feb 2012
  5. Chiclana F, Herrera F, Herrera-Viedma E (1998) Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations. Fuzzy Sets Syst 97:33–48. doi: 10.1016/S0165-0114(96)00339-9 CrossRefGoogle Scholar
  6. Choudhury AK, Shankar R, Tiwari MK (2006) Consensus-based intelligent group decision-making model for the selection of advanced technology. Decis Support Syst 42:1776–1799. doi: 10.1016/j.dss.2005.05.001 CrossRefGoogle Scholar
  7. Chuntian C, Chau KW (2002) Three-person multi-objective conflict decision in reservoir flood control. Eur J Oper Res 142:625–631.doi: 10.1016/S0377-2217(01)00319-8 Google Scholar
  8. Haghayeghi M (2003) The coming of conflict to the Caspian Sea. Probl Post Communism 50:32–41Google Scholar
  9. Herrera F, Herrera-Viedma E, Verdegay JL (1996) Direct approach processes in group decision making using linguistic OWA operators. Fuzzy Sets Syst 79:175–190. doi: 10.1016/0165-0114(95)00162-X CrossRefGoogle Scholar
  10. Hipel KW (1992) Multiple objective decision making in water resources. J Am Water Resour Assoc 28:3–12. doi: 10.1111/j.1752-1688.1992.tb03150.x CrossRefGoogle Scholar
  11. Liu X (2011) A review of the OWA determination methods: classification and some extensions. In: Yage RR, Kacprzyk J, Beliakov G (eds) Recent developments in the ordered weighted averaging operators: theory and practice. Springer, Berlin, pp 49–90. doi: 10.1007/978-3-642-17910-5_4
  12. Liu D, Stewart TJ (2004) Object-oriented decision support system modelling for multicriteria decision making in natural resource management. Comput Oper Res 31:985–999. doi: 10.1016/S0305-0548(03)00047-9 CrossRefGoogle Scholar
  13. Madani K, Gholizadeh S (2011) Game theory insights for the Caspian Sea conflict. In: Beighley IRE, Kilgore MW (eds) World environmental and water resources congress, 2011 bearing knowledge for sustainability. ASCE, California, pp 2815–2819CrossRefGoogle Scholar
  14. Madani K, Lund JR (2011) A Monte-Carlo game theoretic approach for multi-criteria decision making under uncertainty. Adv Water Resour 34:607–616. doi: 10.1016/j.advwatres.2011.02.009 CrossRefGoogle Scholar
  15. Madani K, Sheikhmohammady M, Mokhtari S et al (2013) Social planner’s solution for the Caspian Sea conflict. Gr Decis Negot. doi: 10.1007/s10726-013-9345-7 Google Scholar
  16. Makropoulos CK, Butler D (2006) Spatial ordered weighted averaging: incorporating spatially variable attitude towards risk in spatial multi-criteria decision-making. Environ Model Softw 21:69–84. doi: 10.1016/j.envsoft.2004.10.010 CrossRefGoogle Scholar
  17. Malczewski J, Rinner C (2005) Exploring multicriteria decision strategies in GIS with linguistic quantifiers: a case study of residential quality evaluation. J Geogr Syst 7:249–268. doi: 10.1007/s10109-005-0159-2 CrossRefGoogle Scholar
  18. Mellers BA, Chang S (1994) Representations of risk judgments. Organ Behav Hum Decis Process 57:167–184. doi: 10.1006/obhd.1994.1010 CrossRefGoogle Scholar
  19. Mianabadi H, Afshar A (2008) A new method to evaluate weights of decision makers and its application in water resource management. In: 13th IWRA world water congress, Montpellier, France, pp 1–10Google Scholar
  20. Mianabadi H, Afshar A (2009) Fuzzy group decision making and its application in water resource planning and management. In: Blöschl G, Giesen N van de, Muralidharan D, Al. E (eds) 8th Iahs Scientific Assembly/37th Iah Congress (improving integral surface groundwater resource management a vulnerable changing world). IAHS, Hyderabad, pp 311–318Google Scholar
  21. Mianabadi H, Afshar A, Zarghami M (2011) Intelligent multi-stakeholder environmental management. Expert Syst Appl 38:862–866. doi: 10.1016/j.eswa.2010.07.054 CrossRefGoogle Scholar
  22. Mimi ZA, Sawalhi BI (2003) A decision tool for allocating the waters of the Jordan river basin between all riparian parties. Water Resour Manag 17:447–461. doi: 10.1023/ CrossRefGoogle Scholar
  23. Ölçer Aİ, Odabaşi AY (2005) A new fuzzy multiple attributive group decision making methodology and its application to propulsion/manoeuvring system selection problem. Eur J Oper Res 166:93–114. doi: 10.1016/j.ejor.2004.02.010 Google Scholar
  24. Ramanathan R, Ganesh LS (1994) Group preference aggregation methods employed in AHP: an evaluation and an intrinsic process for deriving members’ weightages. Eur J Oper Res 79:249–265. doi: 10.1016/0377-2217(94)90356-5
  25. Roberts K (2006) Social choice theory and the informational basis approach. Working paper 27. Department of Economics, University of Oxford, UKGoogle Scholar
  26. Rouhani OM, Madani K, Gholizadeh S (2010) Caspian Sea Negotiation Support System. World Environ. Water Resour. Congr. 2010 Challenges Chang. ASCE, Providence, Rhode Island, pp 2694–2702. doi: 10.1061/41114(371)277
  27. Sadiq R, Rodríguez MJ, Tesfamariam S (2010) Integrating indicators for performance assessment of small water utilities using ordered weighted averaging (OWA) operators. Expert Syst Appl 37:4881–4891. doi: 10.1016/j.eswa.2009.12.027 CrossRefGoogle Scholar
  28. Sheikhmohammady M, Madani K (2008) Bargaining over the Caspian Sea—the largest lake on the Earth, World environmental and water resources congress 2008. American Society of Civil Engineers, Reston, pp 1–9. doi: 10.1061/40976(316)262
  29. Sheikhmohammady M, Kilgour DM, Hipel KW (2010) Modeling the Caspian Sea negotiations. Gr Decis Negot 19:149–168. doi: 10.1007/s10726-008-9121-2 CrossRefGoogle Scholar
  30. Sheikhmohammady M, Hipel KW, Kilgour DM (2012a) Formal analysis of multilateral negotiations over the legal status of the Caspian Sea. Gr Decis Negot 21:305–329. doi: 10.1007/s10726-010-9195-5 CrossRefGoogle Scholar
  31. Sheikhmohammady M, Madani K, Moradi M, Bahreini A (2012b) Multi criteria decision-making methods to analyze the Caspian Sea negotiation. Int J Appl Oper Res 1:43–51Google Scholar
  32. Sivakumar B (2011) Water crisis: from conflict to cooperation—an overview. Hydrol Sci J 56:531–552. doi: 10.1080/02626667.2011.580747 CrossRefGoogle Scholar
  33. Smolíková R, Wachowiak MP (2002) Aggregation operators for selection problems. Fuzzy Sets Syst 131:23–34. doi: 10.1016/S0165-0114(01)00252-4 CrossRefGoogle Scholar
  34. Tanino T (1988) Fuzzy preference relations in group decision making. In: Kacprzyk J, Roubens M (eds) Non-conventional preference relations decision making. Springer, Berlin, p 155Google Scholar
  35. Theil H (1963) On the symmetry approach to the committee decision problem. Manag Sci 9:380–393CrossRefGoogle Scholar
  36. Valente R, Vettorazzi C (2008) Definition of priority areas for forest conservation through the ordered weighted averaging method. For Ecol Manage 256:1408–1417. doi: 10.1016/j.foreco.2008.07.006 CrossRefGoogle Scholar
  37. Xu Z (2005) An overview of methods for determining OWA weights. Int J Intell Syst 20:843–865. doi: 10.1002/int.20097 CrossRefGoogle Scholar
  38. Yager RR (1988) On ordered weighted averaging aggregation operators in multi criteria decision making. IEEE Trans Syst Man Cybern 18:183–190. doi: 10.1109/21.87068 CrossRefGoogle Scholar
  39. Yager RR (1991) Connectives and quantifiers in fuzzy sets. Fuzzy Sets Syst 40:39–75CrossRefGoogle Scholar
  40. Yager RR (1993) Families of OWA operators. Fuzzy Sets Syst 59:125–148. doi: 10.1016/0165-0114(93)90194-M CrossRefGoogle Scholar
  41. Yager RR (1996) Quantifier guided aggregation using OWA operators. Int J Intell Syst 11:49–73. doi: 10.1002/(SICI)1098-111X(199601)11:1<49::AID-INT3>3.0.CO;2-Z Google Scholar
  42. Yager RR (2002) On the cardinality index and attitudinal character of fuzzy measures. Int J Gen Syst 31:303–329. doi: 10.1080/03081070290018047 CrossRefGoogle Scholar
  43. Yager RR, Filev DP (1999) Induced ordered weighted averaging operators. IEEE Trans Syst Man Cybern B 29:141–150. doi: 10.1109/3477.752789 CrossRefGoogle Scholar
  44. Zadeh L (1983) A computational approach to fuzzy quantifiers in natural languages. Comput Math with Appl 9:149–184. doi: 10.1016/0898-1221(83)90013-5 CrossRefGoogle Scholar
  45. Zarghami M, Szidarovszky F (2008) Fuzzy quantifiers in sensitivity analysis of OWA operator. Comput Ind Eng 54:1006–1018. doi: 10.1016/j.cie.2007.11.012 CrossRefGoogle Scholar
  46. Zarghami M, Szidarovszky F (2009) Stochastic-fuzzy multi criteria decision making for robust water resources management. Stoch Environ Res Risk Assess 23:329–339. doi: 10.1007/s00477-008-0218-6 CrossRefGoogle Scholar
  47. Zarghami M, Ardakanian R, Memariani A, Szidarovszky F (2008a) Extended OWA operator for group decision making on water resources projects. J Water Resour Plan Manag 134:266–275. doi: 10.1061/(ASCE)0733-9496(2008)134:3(266) CrossRefGoogle Scholar
  48. Zarghami M, Szidarovszky F, Ardakanian R (2008b) A fuzzy-stochastic OWA model for robust multi-criteria decision making. Fuzzy Optim Decis Mak 7:1–15. doi: 10.1007/s10700-007-9021-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hojjat Mianabadi
    • 1
    Email author
  • Majid Sheikhmohammady
    • 2
  • Erik Mostert
    • 1
  • Nick Van de Giesen
    • 1
  1. 1.Department of Water Resources, Faculty of Civil Engineering and GeosciencesDelft University of TechnologyDelftThe Netherlands
  2. 2.Industrial Engineering Department, Faculty of EngineeringTarbiat Modares UniversityTehranIran

Personalised recommendations