Advertisement

A multidimensional scaling approach to enforce reproduction of transition probabilities in truncated plurigaussian simulation

  • Jared L. DeutschEmail author
  • Clayton V. Deutsch
Original Paper

Abstract

Truncated plurigaussian (TPG) simulation is a flexible method for simulating rock types in deposits with complicated ordering structures. The truncation of a multivariate Gaussian distribution controls the proportions and ordering of rock types in the simulation while the variogram for each Gaussian variable controls rock type continuity. The determination of a truncation procedure for complicated geological environments is not trivial. A method for determining the truncation and fitting variograms applicable to any number of rock types and multivariate Gaussian distribution is developed here to address this problem. Multidimensional scaling is applied to place dissimilar categories far apart and similar categories close together. The multivariate space is then mapped using a Voronoi decomposition and rotated to optimize variogram reproduction. A case study simulating geologic layers at a large mineral deposit demonstrates the potential of this method and compares the results with sequential indicator simulation (SIS). Input proportion and transition probability reproduction with TPG is demonstrated to be better than SIS. Variogram reproduction is comparable for both techniques.

Keywords

Categorical variable simulation Sequential indicator simulation Geostatistics Rock type (facies) modeling 

References

  1. Alabert FG (1987) Stochastic imaging of spatial distributions using hard and soft information. Master’s Thesis, Stanford UniversityGoogle Scholar
  2. Allard D, D’Or D, Biver P, Froidevaux R (2012) Non-parametric diagrams for pluri-Gaussian simulations of lithologies. In: Paper presented at the 9th international geostatistical congress, Oslo, NorwayGoogle Scholar
  3. Armstrong M, Galli AG, Le Loc’h G, Geffroy F, Eschard R (2003) Plurigaussian simulations in geosciences. Springer, BerlinCrossRefGoogle Scholar
  4. Beucher H, Galli A, Loc’h G, Ravenne C (1993) Including a regional trend in reservoir modelling using the truncated Gaussian method. In: Soares A (ed) Geostatistics Tróia ’92, vol 5. Springer, Dordrecht, pp 555–566CrossRefGoogle Scholar
  5. Borg I, Groenen PJF (2009) Modern multidimensional scaling: theory and applications. Springer, New YorkGoogle Scholar
  6. Cherubini C, Giasi CI, Musci F, Pastore N (2009) Application of truncated plurigaussian method for the reactive transport modeling of a contaminated aquifer. In: Paper presented at the 4th IASME/WSEAS international conference on water resources, hydraulics and hydrologyGoogle Scholar
  7. Duffin KL, Barrett WA (1994) Spiders: a new user interface for rotation and visualization of n-dimensional point sets. In: Paper presented at the IEEE conference on visualization, ’94, 17–21 Oct 1994Google Scholar
  8. Emery X (2004a) Testing the correctness of the sequential algorithm for simulating Gaussian random fields. Stoch Environ Res Risk Assess 18:401–413CrossRefGoogle Scholar
  9. Emery X (2004b) Properties and limitations of sequential indicator simulation. Stoch Environ Res Risk Assess 18:414–424CrossRefGoogle Scholar
  10. Emery X (2007) Simulation of geological domains using the plurigaussian model: new developments and computer programs. Comput Geosci 33(9):1189–1201CrossRefGoogle Scholar
  11. Galli A, Beucher H, Le Loc'h G, Doligez B (1994) The pros and cons of the truncated Gaussian method. In: Armstrong M, Dowd PA (eds) Geostatistical simulations. Quantitative geology and geostatistics, vol 7. Springer, Dordrecht, pp 217–233Google Scholar
  12. Guardiano F, Srivastava RM (1993) Multivariate geostatistics: beyond bivariate moments. In: Soares A (ed) Geostatistics Tróia ’92, vol 5. Springer, Dordrecht, pp 133–144CrossRefGoogle Scholar
  13. Higham NJ (2002) Computing the nearest correlation matrix—a problem from finance. IMA J Numer Anal 22(3):329–343CrossRefGoogle Scholar
  14. Hosseini AH, Deutsch CV, Biggar KW, Mendoza CA (2010) Probabilistic data integration for characterization of spatial distribution of residual LNAPL. Stoch Environ Res Risk Assess 24:735–749CrossRefGoogle Scholar
  15. Journel AG, Isaaks EH (1984) Conditional Indicator Simulation: application to a Saskatchewan uranium deposit. J Int Assoc Math Geol 16(7):685–718CrossRefGoogle Scholar
  16. Kruskal JB, Wish M (1978) Multidimensional scaling. Sage Publications, LondonGoogle Scholar
  17. Kyriakidis PC, Deutsch CV, Grant ML (1999) Calculation of the normal scores variogram used for truncated Gaussian lithofacies simulation: theory and FORTRAN code. Comput Geosci 25(2):161–169CrossRefGoogle Scholar
  18. Le Loc’h G, Galli A (1997) Truncated plurigaussian method: theoretical and practical points of view. In: Paper presented at geostatistics Wollongong ’96, WollongongGoogle Scholar
  19. Mariethoz G, Renard P, Cornaton F, Jaquet O (2009) Truncated plurigaussian simulations to characterize aquifer heterogeneity. Ground Water 47(1):13–24CrossRefGoogle Scholar
  20. Matheron G, Beucher H, de Fouquet H, Galli A, Guerillot D, Ravenne C (1987) Conditional simulation of the geometry of fluvio-deltaic reservoirs. In: Paper presented at the SPE 1987 annual technical conference and exhibition, DallasGoogle Scholar
  21. Moysey S, Caers J, Knight R, Allen-King RM (2003) Stochastic estimation of facies using ground penetrating radar data. Stoch Environ Res Risk Assess 17:306–318CrossRefGoogle Scholar
  22. Parra Á, Ortiz JM (2011) Adapting a texture synthesis algorithm for conditional multiple point geostatistical simulation. Stoch Environ Res Risk Assess 25:1101–1111CrossRefGoogle Scholar
  23. Sadeghi S, Boisvert JB (2012) Optimizing thresholds in truncated pluri-Gaussian simulation. Cent Comput Geostat Rep 14:129Google Scholar
  24. Strebelle S (2000) Sequential simulation drawing structures from training images. Dissertation, Stanford UniversityGoogle Scholar
  25. Xu C, Dowd PA, Mardia KV, Fowell RJ (2006) A flexible true plurigaussian code for spatial facies simulations. Comput Geosci 32(10):1629–1645CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Civil and Environmental Engineering, School of Mining and Petroleum EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations