Advertisement

Similarity measures of conditional intensity functions to test separability in multidimensional point processes

  • Carlos Díaz-AvalosEmail author
  • P. Juan
  • J. Mateu
Original Paper

Abstract

Separability in the context of multidimensional point processes assumes a multiplicative form for the conditional intensity function. This hypothesis is especially convenient since each component of a separable process may be modeled and estimated individually, and this greatly facilitates model building, fitting, and assessment. This is also related to the problem of reduction in the number of dimensions. Following previous approximations to this problem, we focus on the conditional intensity function, by considering nonparametric kernel-based estimators. Our approach calculates thinning probabilities under the conditions of separability and nonseparability and compares them through divergence measures. Based on Monte Carlo experiments, we approximate the statistical properties of our tests under a variety of practical scenarios. An application on modeling the spatio-temporal first-order intensity of forest fires is also developed.

Keywords

Conditional intensity function Covariates Multidimensional spatial point processes Nonparametric estimation Separability Wildfires 

Mathematics Subject Classifications

62H10 62H15 

Notes

Acknowledgements

Work partially funded by Grant MTM2010-14961 from the Spanish Ministry of Science and Education, and by the program PASPA of the Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México.

References

  1. Assunçao R, Maia A (2007) A note on testing separability in spatial-temporal-marked point processes. Biometrics 63: 290–294CrossRefGoogle Scholar
  2. Baddeley A, Turner R (2000) Practical maximum pseudolikelihood for spatial point processes. NZ J Stat 42: 283–322CrossRefGoogle Scholar
  3. Chang C-H, Schoenberg FP (2011) Testing separability in marked multidimensional point processes with covariates. Ann Inst Stat Math 63(6): 1103–1122CrossRefGoogle Scholar
  4. Comas C, Mateu J (2011) Statistical inference for Gibbs point processes based on field observations. Stoch Environ Res Risk Assess 25: 287–300CrossRefGoogle Scholar
  5. Comas C, Palahi M, Pukkala T, Mateu J (2009) Characterising forest spatial structure through inhomogeneous second order characteristics. Stoch Environ Res Risk Assess 23: 387–397CrossRefGoogle Scholar
  6. Cressie NAC (1993) Statistics for Spatial Data (Revised ed.). Wiley, New YorkGoogle Scholar
  7. Daley D, Vere-Jones D (2003) An introduction to the theory of point processes, 2nd edn. Vol I. Springer, New YorkGoogle Scholar
  8. Díaz-Avalos C, Peterson DL, Alvarado CE, Ferguson, Sue A, Besag JE (2001) Space–time modeling of lightning-caused forest fires in the Blue Mountains, Oregon. Can J Forest Res 31(9): 1579–1593Google Scholar
  9. Diggle PJ (2003) Statistical analysis of spatial point patterns, 2nd edn. Arnold, London, UKGoogle Scholar
  10. Flannigan M, Wotton B (2001) Climate, weather, and area burned. In Forest fires: behavior and ecological effects E. Johnson and K. Miyanishi (eds), Academic Press, San Diego, pp 351–373Google Scholar
  11. Gelfand AE, Diggle PJ, Guttorp P, Fuentes M (2010) Handbook of spatial statistics, CRC Press, Boca RatonGoogle Scholar
  12. Guttorp P (1995) Stochastic modeling of scientific data. Chapman-Hall, LondonGoogle Scholar
  13. Johnson E (1992) Fire and vegetation dynamics: studies from the North American boreal forest. Cambridge University Press, CambridgeGoogle Scholar
  14. Juan P, Mateu J, Saez M (2012) Pinpointing spatio-temporal interactions in wildfire patterns. Stoch Environ Res Risk Assess. doi: 10.1007/s00477-012-0568-y
  15. Kagan Y (1999) Universality of the seismic moment frequency relation. Pure Appl Geophys 155: 233–258CrossRefGoogle Scholar
  16. Keeley JE, Fotheringham C.J (2003) Impact of past, present, and future fire regimes on North American Mediterranean shrublands. In: Veblen TT, Baker WL, Montenegro G, Swetnam TW (eds) Fire and climatic change in temperate ecosystems of the Western Americas, Springer, New York, pp 218–262Google Scholar
  17. Keeley J, Fotheringham C, Morais M (1999) Reexamining fire suppression impacts on brushland fire regimes. Science 284: 1829–1832CrossRefGoogle Scholar
  18. Møller J, Díaz-Avalos C (2010) Structured spatio-temporal shot-noise Cox point process models, with a view to modelling forest fires. Scand J Stat 37: 2–15CrossRefGoogle Scholar
  19. Ogata Y (1988) Statistical models for earthquake occurrences and residual analysis for point processes. J Am Statist Assoc 83(401): 9–27CrossRefGoogle Scholar
  20. Ogata Y, Katsura K (1993) Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogs. Geophys J Int 113: 727–738CrossRefGoogle Scholar
  21. Omi P.N (2005) Forest fires: a reference handbook. ABC-CLIO, Santa Barbara, CA, xviiiGoogle Scholar
  22. Rathbun S.L (1993) Modeling marked spatio-temporal point patterns. Bull Int Stat Inst 55: 379–396Google Scholar
  23. Rey O (1999) Spatial assessment and hazard modeling of tropical forest fires. Ph.D. Thesis. University of Auckland, New ZealandGoogle Scholar
  24. Ripley BD (1976) The second-order analysis of stationary point processes. J Appl Probab 13: 256–266CrossRefGoogle Scholar
  25. Schoenberg FP (2004) Testing separability in multi-dimensional point processes. Biometrics series 60: 471–481CrossRefGoogle Scholar
  26. Schoenberg FP (2006) A note on the separability of multidimensional point processes with covariates. UCLA Preprint Series, No. 496Google Scholar
  27. Schoenberg FP, Brillinger DR, Guttorp PM (2002) Point processes, spatialtemporal. In: El-Schaarawi A, Piegorsch W (eds) Encyclopedia of environmetrics, vol 3. Wiley, New York, pp 1573–1577Google Scholar
  28. Schroeder MJ, Glovinsky M, Hendricks V, Hood F, Hull M, Jacobson H, Kirkpatrick R, Krueger D, Mallory L, Oertel A, Reese R, Sergius L, Syverson C (1964) Synoptic weather types associated with critical fire weather. Institute for Applied Technology. National Bureau of Standards, U.S. Department of Commerce. Washington, DCGoogle Scholar
  29. Shitan M, Brockwell PJ (1995) An asymptotic test for separability of a spatial autoregressive model. Commun Stat Theory Meth 24: 2027–2040CrossRefGoogle Scholar
  30. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Research Institute in Applied Mathematics and Systems, National University of MexicoMexicoMexico
  2. 2.Department of MathematicsUniversitat Jaume ICastellónSpain

Personalised recommendations