Stochastic Environmental Research and Risk Assessment

, Volume 26, Issue 8, pp 1041–1051

The implementation of Bayesian structural additive regression models in multi-city time series air pollution and human health studies

Original Paper


In this study, a novel Bayesian semiparametric structural additive regression (STAR) model is introduced in multi-city time series air pollution and human health studies. This modeling approach can simultaneously take into account the fixed effects, random effects, nonlinear smoothing functions and spatial functions in an integrated model framework. This study focuses on examining the powerful functionalities of this approach in modeling air pollution and mortality data of 100 U.S. cities from 1987 to 2000. Compared with previous studies, the modeling approach used in this study yields consistent findings of nation-level and city-level PM10 (particulate matter less than 10 μm) effects on mortality. Notably, cities with significantly elevated mortality rates were concentrated in the Northeastern U.S. This modeling approach also emphasizes the important functionality of the spatial function in visualizing disease mapping. Model diagnostics were performed to confirm the availability of the STAR model. We also found consistent findings by using different hyperparameters in the sensitivity analysis. To sum up, the implementation of this modeling approach has achieved the goals of applying a spatial function and obtaining robust results in the multi-city time series air pollution and human health study.


Structural additive regression models Air pollution Mortality Spatio-temporal analysis 


  1. Adebayo SB (2004) Bayesian geoadditive modelling of breastfeeding initiation in Nigeria. J Appl Econom 19(2):267–281CrossRefGoogle Scholar
  2. Aga E, Samoli E, Touloumi G, Anderson HR, Cadum E, Forsberg B, Goodman P, Goren A, Kotesovec F, Kriz B, Macarol-Hiti M, Medina S, Paldy A, Schindler C, Sunyer J, Tittanen P, Wojtyniak B, Zmirou D, Schwartz J, Katsouyanni K (2003) Short-term effects of ambient particles on mortality in the elderly: results from 28 cities in the APHEA2 project. Eur Respir J Suppl 40:28s–33sCrossRefGoogle Scholar
  3. Allshouse W, Pleil J, Rappaport S, Serre M (2009) Mass fraction spatiotemporal geostatistics and its application to map atmospheric polycyclic aromatic hydrocarbons after 9/11. Stoch Environ Res Risk Assess 23(8):1213–1223CrossRefGoogle Scholar
  4. Belitz C, Brezger A, Kneib T, Lang S (2009) BayesX—Software for Bayesian inference in structured additive regression models. Version 2.01.
  5. Beyea J (1999) Geographic exposure modeling: a valuable extension of geographic information systems for use in environmental epidemiology. Environ Health Perspect 107(Suppl 1):181–190CrossRefGoogle Scholar
  6. Brezger A, Lang S (2006) Generalized structured additive regression based on Bayesian P-splines. Comput Stat Data Anal 50(4):967–991CrossRefGoogle Scholar
  7. Brunauer W, Lang S, Umlauf N (2010) Modeling house prices using multilevel structured additive regression. Working paper, Department of Economics and Statistics, University of Innsbruck, InnsbruckGoogle Scholar
  8. Demissie S, LaValley MP, Horton NJ, Glynn RJ, Cupples LA (2003) Bias due to missing exposure data using complete-case analysis in the proportional hazards regression model. Stat Med 22(4):545–557CrossRefGoogle Scholar
  9. Dhondt S, Le Xuan Q, Van Vu H, Hens L (2011) Environmental health impacts of mobility and transport in Hai Phong, Vietnam. Stoch Environ Res Risk Assess 25(3):363–376CrossRefGoogle Scholar
  10. Dockery DW, Pope CA 3rd (1994) Acute respiratory effects of particulate air pollution. Annu Rev Public Health 15:107–132CrossRefGoogle Scholar
  11. Dominici F, Daniels M, Zeger SL, Samet JM (2002a) Air pollution and mortality: estimating regional and national dose-response relationships. J Am Stat Assoc 97(457):100–111CrossRefGoogle Scholar
  12. Dominici F, McDermott A, Zeger SL, Samet JM (2002b) National maps of the effects of particulate matter on mortality: exploring geographical variation. Environ Health Perspect 111(1):39–44CrossRefGoogle Scholar
  13. Dominici F, McDermott A, Zeger SL, Samet JM (2002c) On the use of generalized additive models in time-series studies of air pollution and health. Am J Epidemiol 156(3):193–203CrossRefGoogle Scholar
  14. Dominici F, McDermott A, Zeger SL, Samet JM (2003) Airborne particulate matter and mortality: timescale effects in four US cities. Am J Epidemiol 157(12):1055–1065CrossRefGoogle Scholar
  15. Dominici F, McDermott A, Daniels M, Zeger SL, Samet JM (2005) Revised analyses of the national morbidity, mortality, and air pollution study: mortality among residents of 90 cities. J Toxicol Environ Health A 68(13–14):1071–1092CrossRefGoogle Scholar
  16. Eilers PHC, Marx BD (1996) Flexible smoothing with B-splines and penalties. Stat Sci 11(2):89–102CrossRefGoogle Scholar
  17. Fahrmeir L, Lang S (2001) Bayesian semiparametric regression analysis of multicategorical time-space data. Ann Inst Stat Math 53(1):11–30CrossRefGoogle Scholar
  18. Fromont A, Binquet C, Sauleau EA, Fournel I, Bellisario A, Adnet J, Weill A, Vukusic S, Confavreux C, Debouverie M, Clerc L, Bonithon-Kopp C, Moreau T (2010) Geographic variations of multiple sclerosis in France. Brain 133(Pt 7):1889–1899CrossRefGoogle Scholar
  19. Gamerman D (1997) Sampling from the posterior distribution in generalized linear mixed models. Stat Comput 7(1):57–68CrossRefGoogle Scholar
  20. Gelman A, Rubin D (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472CrossRefGoogle Scholar
  21. Haining R, Law J, Maheswaran R, Pearson T, Brindley P (2007) Bayesian modelling of environmental risk: example using a small area ecological study of coronary heart disease mortality in relation to modelled outdoor nitrogen oxide levels. Stoch Environ Res Risk Assess 21(5):501–509CrossRefGoogle Scholar
  22. Hastie T, Tibshirani R (1990) Generalized additive models. Monographs on statistics and applied probability, vol 43, 1st edn. Chapman and Hall, LondonGoogle Scholar
  23. Kandala NB, Ji C, Stallard N, Stranges S, Cappuccio FP (2008) Morbidity from diarrhoea, cough and fever among young children in Nigeria. Ann Trop Med Parasitol 102(5):427–445CrossRefGoogle Scholar
  24. Kandala NB, Brodish P, Buckner B, Foster S, Madise N (2011) Millennium development goal 6 and HIV infection in Zambia: what can we learn from successive household surveys? AIDS 25(1):95–106CrossRefGoogle Scholar
  25. Kazembe LN (2009) A semiparametric sequential ordinal model with applications to analyse first birth intervals. Austrian J Stat 38(2):83–99Google Scholar
  26. Khatab K (2010) Childhood malnutrition in Egypt using geoadditive Gaussian and latent variable models. Am J Trop Med Hyg 82(4):653–663CrossRefGoogle Scholar
  27. Kindermann R, Snell JL (1980) Markov random fields and their applications. Contemporary mathematics, vol 1. American Mathematical Society, ProvidenceCrossRefGoogle Scholar
  28. Knorr-Held L (1999) Conditional prior proposals in dynamic models. Scand J Stat 26(1):129–144CrossRefGoogle Scholar
  29. Lang S, Brezger A (2004) Bayesian P-splines. J Comput Graph Stat 13(1):183–212CrossRefGoogle Scholar
  30. Lang S, Umlauf N (2010) Applications of multilevel structured additive regression models to insurance Data. Working paper, Department of Economics and Statistics, University of Innsbruck, InnsbruckGoogle Scholar
  31. Li H, Huang G, Zou Y (2008) An integrated fuzzy-stochastic modeling approach for assessing health-impact risk from air pollution. Stoch Environ Res Risk Assess 22(6):789–803CrossRefGoogle Scholar
  32. Musio M, Sauleau EA, Buemi A (2010) Bayesian semi-parametric ZIP models with space-time interactions: an application to cancer registry data. Math Med Biol 27(2):181–194CrossRefGoogle Scholar
  33. Nerich V, Monnet E, Etienne A, Louafi S, Ramee C, Rican S, Weill A, Vallier N, Vanbockstael V, Auleley GR, Allemand H, Carbonnel F (2006) Geographical variations of inflammatory bowel disease in France: a study based on national health insurance data. Inflamm Bowel Dis 12(3):218–226CrossRefGoogle Scholar
  34. Nugroho S, Fujiwara A, Zhang J (2011) An empirical analysis of the impact of a bus rapid transit system on the concentration of secondary pollutants in the roadside areas of the TransJakarta corridors. Stoch Environ Res Risk Assess 25(5):655–669CrossRefGoogle Scholar
  35. Peng RD, Dominici F, Pastor-Barriuso R, Zeger SL, Samet JM (2005) Seasonal analyses of air pollution and mortality in 100 US cities. Am J Epidemiol 161(6):585–594CrossRefGoogle Scholar
  36. Pope CA 3rd, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287(9):1132–1141CrossRefGoogle Scholar
  37. Samet JM, Zeger SL, Dominici F, Curriero F, Coursac I, Dockery DW, Schwartz J, Zanobetti A (2000a) The national morbidity, mortality, and air pollution study, part II: morbidity and mortality from air pollution in the United States. Health Effects Institute, CambridgeGoogle Scholar
  38. Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL (2000b) Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N Engl J Med 343(24):1742–1749CrossRefGoogle Scholar
  39. Serio CD, Claudia L (2009) Investigating determinants of multiple sclerosis in longitudinal studies: a Bayesian approach. J Probab Stat 2009:24Google Scholar
  40. Ugarte MD, Goicoa T, Militino AF (2010) Spatio-temporal modeling of mortality risks using penalized splines. Environmetrics 21(3–4):270–289Google Scholar
  41. van der Heijden GJMG, Donders ART, Stijnen T, Moons KGM (2006) Imputation of missing values is superior to complete case analysis and the missing-indicator method in multivariable diagnostic research: a clinical example. J Clin Epidemiol 59(10):1102–1109CrossRefGoogle Scholar
  42. Wang Q, Yuan X, Ma C, Zhang Z, Zuo J (2012) Research on the impact assessment of urbanization on air environment with urban environmental entropy model: a case study. Stoch Environ Res Risk Assess (in press)Google Scholar
  43. Welty LJ, Zeger SL (2005) Are the acute effects of particulate matter on mortality in the national morbidity, mortality, and air pollution study the result of inadequate control for weather and season? A sensitivity analysis using flexible distributed lag models. Am J Epidemiol 162(1):80–88CrossRefGoogle Scholar
  44. Yu HL, Kolovos A, Christakos G, Chen JC, Warmerdam S, Dev B (2007) Interactive spatiotemporal modelling of health systems: the SEKS–GUI framework. Stoch Environ Res Risk Assess 21(5):555–572CrossRefGoogle Scholar
  45. Yu HL, Chen JC, Christakos G, Jerrett M (2009) BME estimation of residential exposure to ambient PM10 and ozone at multiple time scales. Environ Health Perspect 117(4):537–544Google Scholar
  46. Zeger SL, Dominici F, McDermott A, Samet JM (2008) Mortality in the Medicare population and chronic exposure to fine particulate air pollution in urban centers (2000–2005). Environ Health Perspect 116(12):1614–1619CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Internal Medicine, Division of Health Behavior ResearchWashington University School of MedicineSt. LouisUSA
  2. 2.Department of BiostatisticsUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations