Bayesian optimal design of an avalanche dam using a multivariate numerical avalanche model

  • N. Eckert
  • E. Parent
  • T. Faug
  • M. Naaim
Original Paper


For snow avalanches, passive defense structures are generally designed by considering high return period events. However, defining a return period turns out to be tricky as soon as different variables are simultaneously considered. This problem can be overcome by maximizing the expected economic benefit of the defense structure, but purely stochastic approaches are not possible for paths with a complex geometry in the runout zone. Therefore, in this paper, we include a multivariate numerical avalanche propagation model within a Bayesian decisional framework. The influence of a vertical dam on an avalanche flow is quantified in terms of local energy dissipation with a simple semi-empirical relation. Costs corresponding to dam construction and the damage to a building situated in the runout zone are roughly evaluated for each dam height–hazard value pair, with damage intensity depending on avalanche velocity. Special attention is given to the poor local information to be taken into account for the decision. Using a case study from the French avalanche database, the Bayesian optimal dam height is shown to be more pessimistic than the classical optimal height because of the increasing effect of parameter uncertainty. It also appears that the lack of local information is especially critical for a building exposed to the most extreme events only. The residual hazard after dam construction is analyzed and the sensitivity to the different modelling assumptions is evaluated. Finally, possible further developments of the approach are discussed.


Snow avalanches Multivariate numerical modelling Vertical dam Risk function Optimal design Uncertainty Bayesian framework Residual hazard 


  1. Abraham C, Daures J (2000) Global robustness with respect to the loss function and the prior. Theory Decis 48:359–381CrossRefGoogle Scholar
  2. Abraham C, Cadre B (2004) Asymptotic global robustness in Bayesian decision theory. Ann Stat 32:1341–1366CrossRefGoogle Scholar
  3. Amzal B, Bois FY, Parent E, Robert CP (2006) Bayesian-optimal design via interacting particle systems. J Am Stat Assoc 101(474):773–785CrossRefGoogle Scholar
  4. Ancey C (2005) Monte Carlo calibration of avalanches described as Coulomb fluid flows. Philos Trans R Soc Lond A 363:1529–1550CrossRefGoogle Scholar
  5. Ancey C. dir. et al. (2006) Dynamique des avalanches. Presses Polytechniques et Universitaires Romandes, pp 334Google Scholar
  6. Ancey C, Gervasoni C, Meunier M (2004) Computing extreme avalanches. Cold Reg Sci Technol 39:161–184CrossRefGoogle Scholar
  7. Ancey C, Richard D (2000) Détermination de l’aléa de référence. Rapport Cemagref/Météo France à la Direction de la Prévention des Pollutions et des Risques, pp 176Google Scholar
  8. Arnalds P, Jonasson K, Sigurdson ST (2004) Avalanche hazard zoning in Iceland based on individual risk. Ann Glaciol 38:285–290CrossRefGoogle Scholar
  9. Atkinson A, Donev A (1992) Optimum experimental designs. Oxford Press, NY, USA, pp 333Google Scholar
  10. Barbolini M, Keylock CJ (2002) A new method for avalanche hazard mapping using a combination of statistical and deterministic models. Nat Hazards Earth Syst Sci 2:239–245Google Scholar
  11. Barbolini M, Cappabianca F, Savi S (2004a) Risk assessment in avalanche-prone areas. Ann Glaciol 38:115–122CrossRefGoogle Scholar
  12. Barbolini M, Cappabianca F, Sailer R (2004b) Empirical estimate of vulnerability relations for use in snow avalanche risk assessment. Atti del convegno Risk Analysis 2004:. 533–542. 27–29 Settembre, Rodi, Grecia. Ed. C. A. BrebbiaGoogle Scholar
  13. Bardou E (2006) Réglementation en Suisse. In Dynamique des avalanches. C. Ancey dir. Presses Polytechniques et Universitaires Romandes, pp 334Google Scholar
  14. Bartelt P, Salm B, Gruber U (1999) Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. J Glaciol 45:242–254Google Scholar
  15. Bayes T (1763) Essay towards solving a problem in the doctrine of chances. Philos Trans R Soc London 53:370–418 and 54:296–325Google Scholar
  16. Bélanger L, Cassayre Y (2004) Projects for past avalanche observation and zoning in France, after 1999 catastrophic avalanches. In: Proceedings of the international snow survey workshop, 19–24 September 2004. Jackson Hole, Wyoming, pp 416–422Google Scholar
  17. Berger JO (1985) Statistical decision theory and Bayesian analysis, 2nd edn. Springer, Heidelberg, pp 617Google Scholar
  18. Bernardo JM, Smith AFM (1994) Bayesian theory. Wiley, New YorkGoogle Scholar
  19. Bernier J (2003) Décisions et comportements des décideurs face au risque. Journal des Sciences Hydrologiques 48(3):301–316CrossRefGoogle Scholar
  20. Berthet Rambaud P (2004) Structures rigides soumises aux avalanches et chutes de blocs: modélisation du comportement mécanique et caractérisation de l’interaction phénomène-ouvrage. Doctorat sciences et géographie, spécialité: mécanique et génie-civil. Université Joseph Fourier, Grenoble, pp 285Google Scholar
  21. Bertrand D, Naaim M (2008) Physical vulnerability of concrete buildings affected by snow avalanches. J Glaciol (submitted)Google Scholar
  22. Bouchet A, Naaim M, Bellot H, Ousset F (2004) Experimental study of dense snow avalanches: velocity profiles in steady and fully developed flows. Ann Glaciol 38:30–34CrossRefGoogle Scholar
  23. Bozhinskiy AN, Nazarov AN, Chernouss PA (2001) Avalanches: a probabilistic approach to modelling. Ann Glaciol 32:255–258CrossRefGoogle Scholar
  24. Brooks SP (2003) Bayesian computation: a statistical revolution. Trans R Stat Soc Ser A 15:2681–2697Google Scholar
  25. Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7(4):434–455CrossRefGoogle Scholar
  26. Brooks SP, Roberts GO (1998) Assessing convergence of Markov chain Monte Carlo algorithms. Stat Comput 8:319–335CrossRefGoogle Scholar
  27. Chernouss PA, Fedorenko Y (2001) Application of statistical simulation for avalanche risk evaluation. Ann Glaciol 32:182–186CrossRefGoogle Scholar
  28. Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8:2–14CrossRefGoogle Scholar
  29. Coles S (2001) An introduction to statistical modelling of extreme values. Springer, Heidelberg, pp 208Google Scholar
  30. Dent JD, Lang TE (1980) Modelling of snow flow. J Glaciol 26–94:131–140Google Scholar
  31. Eckert N, Parent E (2006) Monte Carlo calibration of a dynamic model for avalanche predetermination using the Metropolis–Hastings algorithm. In: Proceedings of the 3rd international conference on avalanches and related subjects. Kirovsk, Russia, pp 22–30Google Scholar
  32. Eckert N, Parent E, Richard D (2007a) Revisiting statistical–topographical methods for avalanche predetermination: Bayesian modelling for runout distance predictive distribution. Cold Reg Sci Technol 49:88–107CrossRefGoogle Scholar
  33. Eckert N, Parent E, Belanger L et al (2007b) Hierarchical modelling for spatial analysis of the number of avalanche occurrences at the scale of the township. Cold Reg Sci Technol 50:97–112CrossRefGoogle Scholar
  34. Eckert N, Parent E, Naaim M, Richard D (2008a) Bayesian stochastic modelling for avalanche predetermination: from a general system framework to return period computations. Stoch Env Res Risk A 22:185–206CrossRefGoogle Scholar
  35. Eckert N, Parent E, Faug T, Naaim M (2008b) Optimal design under uncertainty of a passive defense structure against snow avalanches: from a general Bayesian framework to a simple analytical model. Nat Hazards Earth Syst Sci 8:1067–1081Google Scholar
  36. Faug T (2004) Simulation sur modèle réduit de l’influence d’un obstacle sur un écoulement à surface libre. Thèse de doctorat en Sciences de la Terre, de l’Univers et de l’Environnement. Université Joseph Fourier. Grenoble. France, pp 175Google Scholar
  37. Faug T, Naaim M, Bertrand D, Lachamp P, Naaim-Bouvet F (2003) Varying dam height to shorten the run-out of dense avalanche flows: developing a scaling law from laboratory experiments. Surv Geophys 24(5/6):555–568CrossRefGoogle Scholar
  38. Faug T, Gauer P, Lied K, Naaim M (2008) Overrun length of avalanches overtopping catching dams: cross-comparison of small-scale laboratory experiments and observations from full-scale avalanches. J Geophys Res 113:F03009. doi: 10.1029/2007JF000854 CrossRefGoogle Scholar
  39. Fuchs S, Bründl M (2005) Damage potential and losses resulting from snow avalanches in settlements in the Canton of Grisons, Switzerland. Nat Hazards 34:53–69CrossRefGoogle Scholar
  40. Fuchs S, McAlpin MC (2005) The net benefit of public expenditures on avalanche defense structures in the municipality of Davos, Switzerland. Nat Hazards Earth Syst Sci 5:319–330Google Scholar
  41. Fuchs S, Bründl M, Stötter J (2004) Development of avalanche risk between 1950 and 2000 in the municipality of Davos, Switzerland. Nat Hazards Earth Syst Sci 4:263–275Google Scholar
  42. Fuchs S, Keiler M, Zischg A et al (2005) The long-term development of avalanche risk in settlements considering the temporal variability of damage potential. Nat Hazards Earth Syst Sci 5:893–901Google Scholar
  43. Gauer P, Kristensen K (2005) Avalanche studies and model validation in Europe, SATSIE; Ryggfonn measurements: Overview and dam interaction. NGI Report 20021048-10. Sognsveien 72, N-0806 Oslo, Norwegian Geotechnical InstituteGoogle Scholar
  44. Gelman A (1996) Inference and monitoring convergence. Markov chain Monte Carlo in practice. Chapman & Hall, London, pp 131–143Google Scholar
  45. Gilks WR, Richardson S, Spiegelhalter DJ (2001) Markov chain Monte Carlo in practice. Chapman & Hall, London, pp 486Google Scholar
  46. Grêt-Regamey A, Straub D (2006) Spatially explicit avalanche risk assessment linking Bayesian networks to a GIS. Nat Hazards Earth Syst Sci 6:911–926Google Scholar
  47. Hákonardóttir KM (2004) The interaction between snow avalanches and dams. PhD thesis. Bristol University, 148 pGoogle Scholar
  48. Hakonardottir KM, Johannesson T, Tiefenbacher F, Kern M (2001) A laboratory study of the retarding effect of breaking mounds in 3, 6 and 9 m long chutes. IMO Report 01007. VEDURSTOFA ISLANDSGoogle Scholar
  49. Harbitz C, Issler D, Keylock CJ (1998) Conclusions from a recent survey of avalanche computational models. In: Proceedings of the anniversary conference 25 years of snow avalanche research, Voss, 12–16 May. Norvegian Geotechnical Institute Publication, 203, pp 128–139Google Scholar
  50. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrica 57:97–109CrossRefGoogle Scholar
  51. Jonasson K, Sigurdson ST, Arnalds P (1999) Estimation of Avalanche Risk. Vedurstofu Islands. Reykjavik. VI-R99001-UR01, 44 pGoogle Scholar
  52. Jordaan I (2005) Decisions under uncertainty. Probabilistic analysis for engineering decisions. Cambridge University Press, LondonGoogle Scholar
  53. Keiler M (2004) Development of the damage potential resulting from avalanche risk in the period 1950–2000: case study Galtür. Nat Hazards Earth Syst Sci 4:249–256CrossRefGoogle Scholar
  54. Keylock CJ (2005) An alternative form for the statistical distribution of extreme avalanche runout distances. Cold Reg Sci Technol 42:185–193CrossRefGoogle Scholar
  55. Keylock CJ, Barbolini M (2001) Snow avalanche impact pressure—vulnerability relations for use in risk assessment. Can Geotech J 38:227–238CrossRefGoogle Scholar
  56. Keylock CJ, McClung D, Magnusson M (1999) Avalanche risk mapping by simulation. J Glaciol 45(150):303–314Google Scholar
  57. Krzysztofowicz R (1983) Why should a forecaster and a decision maker use Bayes Theorem. Water Resour Res 19(2):327–336CrossRefGoogle Scholar
  58. Lauritzen S (1996) Graphical models. Oxford University Press, NY, USAGoogle Scholar
  59. Lied K, Bakkehoi S (1980) Empirical calculations of snow-avalanche run-out distances based on topographic parameters. J Glaciol 26(94):165–176Google Scholar
  60. Lied K, Moe A, Kristensen K. et al (2001). Ryggfonn. Full scale avalanche test site and the effect of the catching dam. In: Proceedings of the symposium snow and avalanche test sites. Grenoble, FranceGoogle Scholar
  61. McClung D, Lied K (1987) Statistical and geometrical definition of snow-avalanche runout. Cold Reg Sci Technol 13:107–119CrossRefGoogle Scholar
  62. Merz B, Kreibich H, Thieken A, Schmidtke R (2004) Estimation uncertainty of direct monetary flood damage to buildings. Nat Hazards Earth Syst Sci 4:153–163Google Scholar
  63. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machine. J Chem Phys 21:1087–1091CrossRefGoogle Scholar
  64. Meunier M, Ancey C (2004) Towards a conceptual approach to predetermining high-return-period avalanche run-out distances. J Glaciol 50–169:268–278CrossRefGoogle Scholar
  65. Meunier M, Ancey C, Naaim M (2001) Mise au point d’une méthode de prédétermination statistique des cotes d’arrêt d’avalanches. La Houille Blanche 67:92–98CrossRefGoogle Scholar
  66. Meunier M, Ancey C, Richard D (2004) L’approche conceptuelle pour l’étude des avalanches. Cemagref ed, 245ppGoogle Scholar
  67. Mougin P (1922) Les avalanches en Savoie. Ministère de l’Agriculture, Direction Générale des Eaux et Forêts, Service des Grandes Forces Hydrauliques. Paris, France 175–317Google Scholar
  68. Müller P (1999) Simulation-based optimal design. Bayesian Stat 6:459–474Google Scholar
  69. Naaim M (1998) Contribution to snow drift and avalanches flows modelling. Habilitation thesis, University Joseph Fourier, Grenoble, France, pp 180Google Scholar
  70. Naaim M, Naaim-Bouvet F, Faug T, Bouchet A (2004) Dense snow avalanche modelling: flow, erosion, deposition and obstacle effects. Cold Reg Sci Technol 39:193–204CrossRefGoogle Scholar
  71. Parent E, Bernier J (2003) Bayesian P·O.T. modelling for historical data. J Hydrol 274:95–108CrossRefGoogle Scholar
  72. Perreault L, Haché M, Slivitzky M, Bobée B (1999) Detection of changes in precipitation and runoff over eastern Canada and U.S. using a Bayesian approach. Stoch Env Res Risk A 13(3):201–216CrossRefGoogle Scholar
  73. Perreault L, Bernier J, Bobée B, Parent E, Slivitzky M (2000) Retrospective multivariate Bayesian change-point analysis: a simultaneous single change in the mean of several hydrological sequences. Stoch Env Res Risk A 14(4):243–261CrossRefGoogle Scholar
  74. Rao A, Tirtotjondro W (1996) Investigation of changes in characteristics of hydrological time series by Bayesian methods. Stoch Env Res Risk A 10(4):295–317Google Scholar
  75. Salm B, Burkard A, Gubler HU (1990) Berechnung von Fliesslawinen: eine Anleitung für Praktiker mit Beispilen. SLF Davos technical report 47Google Scholar
  76. Sovilla B, Schaer M, Kern M, Bartelt P (2008) Impact pressures and flow regimes in dense snow avalanches observed at the Vallée de la Sionne test site. J Geophys Res 113:F01010. doi: 10.1029/2006JF000688 CrossRefGoogle Scholar
  77. Tanner MH (1992) Tools for statistical inference: observed data and data augmentation methods. Springer, HeidelbergGoogle Scholar
  78. Voellmy A (1955) Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung, Jahrg. 73, 12: 159–162, 212–217, 246–249 and 280–285Google Scholar
  79. Wakefield J (1994) An expected loss approach to the design of dosage regimens via sampling-based methods. The Statistician. vol 43. No. 1. Special Issue: Conference on Practical Bayesian Statistics, pp 13–29Google Scholar
  80. Wilhelm C (1997) Wirtschaftlichkeit im Lawinenschutz. Methodik und Erhebungen zur Beurteilung von Schutzmassnahmen mittels quantitativer Risikoanalyse und ökonomischer Bewertung. Mitt.Eidgenöss. Inst. Schnee- Lawinenforsch, 54, pp 1–309Google Scholar
  81. Wilhelm C (1999) Kosten-Wirksamkeit von Lawinenschutzmassnahmen an Verkehrsachsen, BUWAL, Bern (Vollzug Umwelt, Praxishilfe)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.UR ETNA, Cemagref GrenobleSaint Martin d’HèresFrance
  2. 2.Equipe MORSE, UMR 518 AgroParisTech/INRAParis Cedex 15France

Personalised recommendations