A length-biased version of the Birnbaum-Saunders distribution with application in water quality

  • Víctor Leiva
  • Antonio Sanhueza
  • José M. Angulo
Original Paper

Abstract

In this article, we develop a new model based on the Birnbaum-Saunders distribution that results to be both useful and practical for environmental sciences. The density, distribution and hazard functions, moments and properties of this new model are presented. A graphical analysis of the density is also provided. Furthermore, we estimate parameters, propose asymptotic inference and discuss influence diagnostics by using likelihood methods for the new distribution. An illustrative example with real data related to water quality indicates the adequacy on the new distribution.

Keywords

Diagnostics Likelihood methods Skewed distributions Water quality 

Notes

Acknowledgments

The authors wish to thank the Editor, AE and referees for their helpful comments that aided in improving this article. Also, the authors thank the Dirección General de Aguas of the government of Chile for providing the data used in this article. This research was partially supported by grants FONDECYT 1050862, Chile, International Clinical Epidemiology Network (INCLEN) and DGI MTM2005-08597 and Andalusian CICYE P05-FQM-00990, Spain.

References

  1. Balakrishnan N, Leiva V, López J (2007) Acceptance sampling plans from truncated life tests from generalized Birnbaum-Saunders distribution. Comm Stat Simul Comp 36:643–656CrossRefGoogle Scholar
  2. Cook RD (1986) Assessment of local influence (with discussion). J R Stat Soc B 48:133–169Google Scholar
  3. Cook RD, Weisberg S (1982) Residuals and influence in regression. Chapman and Hall, LondonGoogle Scholar
  4. Desa E, Zingde MD, Vethamony P, Babu MT, D’Sousa SN, Verlecar XN (2005) Dissolved oxygen–a target indicator in determining use of the Gulf of Kachchh waters. Mar Pollut Bull 50:73–79CrossRefGoogle Scholar
  5. Gokhale S, Khare M (2003) Statistical methodologies and modelling in air pollution. J Inst Engineer India (Environ Engng Div) 83:46–53Google Scholar
  6. Gupta RC, Kirmani S (1990) The role of weighted distributions in stochastic modeling. Comm Stat Theor Meth 19:3147–3162CrossRefGoogle Scholar
  7. Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions—vol 2. Wiley, New YorkGoogle Scholar
  8. Lee L, Helsel D (2005) Statistical analysis of water-quality data containing multiple detection limits: S-language software for regression on order statistics. Comput Geosci 31:1241–1248CrossRefGoogle Scholar
  9. Leiva V, Hernández H, Riquelme M (2006) A new package for the Birnbaum-Saunders distribution. R News 6:35–40Google Scholar
  10. Leiva V, Barros M, Paula GA, Galea M (2007) Influence diagnostics in log-Birnbaum-Saunders regression models with censored data. Comput Stat Data Anal 51:5694–5707CrossRefGoogle Scholar
  11. Leiva V, Barros M, Paula GA, Sanhueza A (2008) Generalized Birnbaum-Saunders distribution applied to air pollutant concentration. Environmetrics 19, doi: 10.1002/env.861 (in press)
  12. Ng HK, Kundu D, Balakrishnan N (2003) Modified moment estimation for the two-parameter Birnbaum-Saunders distribution. Comput Stat Data Anal 43:283–298CrossRefGoogle Scholar
  13. Patil GP (2002) Weighted distributions. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of environmetrics, vol 4. Wiley, Chichester, pp 2369–2377Google Scholar
  14. Sanhueza A, Leiva V, Balakrishnan N (2008) The generalized Birnbaum-Saunders distribution and its theory, methodology and application. Comm Stat Theor Meth 37:645–670CrossRefGoogle Scholar
  15. Sansgiry PS, Akman O (2001) Reliability estimation via length-biased transformation. Comm Stat Theor Meth 30:2473–2479CrossRefGoogle Scholar
  16. Spieglhaiter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of complexity and fit. J R Stat Soc B 64:1–34CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Víctor Leiva
    • 1
  • Antonio Sanhueza
    • 2
  • José M. Angulo
    • 3
  1. 1.Departamento de EstadísticaUniversidad de ValparaísoValparaísoChile
  2. 2.Departamento de Matemática y EstadísticaUniversidad de La FronteraTemucoChile
  3. 3.Departamento de Estadística e Investigación OperativaUniversidad de GranadaGranadaSpain

Personalised recommendations