Interactive spatiotemporal modelling of health systems: the SEKS–GUI framework

  • Hwa-Lung Yu
  • Alexander Kolovos
  • George Christakos
  • Jiu-Chiuan Chen
  • Steve Warmerdam
  • Boris Dev
Original Paper


This paper describes the spatiotemporal epistematics knowledge synthesis and graphical user interface (SEKS–GUI) framework and its application in medical geography problems. Based on sound theoretical reasoning, the interactive software library of SEKS–GUI explores heterogeneous (spatially non-homogeneous and temporally non-stationary) health attribute distributions (disease incidence, mortality, human exposure, epidemic propagation etc.); expresses the health system’s dependence structure using (ordinary and generalized) spatiotemporal covariance models; synthesizes core knowledge bases, empirical evidence and multi-sourced system uncertainty; and generates a meaningful picture of the real-world system using space–time dependent probability functions and associated maps of health attributes. The implementation stages of the SEKS–GUI library are described in considerable detail using appropriate screens. The wide applicability of SEKS–GUI is demonstrated by reviewing a selection of real-world case studies.


Medical geography Health Disease Epidemic Uncertainty BME Interdisciplinary 



The research was supported by grants from the Fred J. Hansen Institute (Grant No. 54266A P3590), the Oak Ridge National Lab (OR7865-001.01), and the National Institute of Environmental Health Sciences (P30ES10126).


  1. Bogaert P (1996) Comparison of kriging techniques in a space–time context. Math Geol 28(1):73–86CrossRefGoogle Scholar
  2. Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis, forecasting and control, 3rd edn. Prentice Hall, Englewood ClifsGoogle Scholar
  3. Choi K-M, Serre ML, Christakos G (2003) Efficient mapping of California mortality fields at different spatial scales. J Expo Anal Environ Epidemiol 13(2):120–133CrossRefGoogle Scholar
  4. Choi K-M, Christakos G, Wilson ML (2006) El Niño effects on influenza mortality risks in the state of California. J Public Health 120:505–516CrossRefGoogle Scholar
  5. Christakos G (1990) Random field modelling and its applications in stochastic data processing. Ph.D. Thesis, Division of Applied Sciences, Harvard University, Cambridge, MAGoogle Scholar
  6. Christakos G (1991) On certain classes of spatiotemporal random fields with application to space–time data processing. IEEE Trans Syst Man Cybern 21(4):861–875CrossRefGoogle Scholar
  7. Christakos G (1992) Random field models in earth sciences. Acad Press, San Diego. New edition, Dover Publishing Inc., Mineola, NY, 2005Google Scholar
  8. Christakos G (2000) Modern spatiotemporal geostatistics. Oxford University Press, New YorkGoogle Scholar
  9. Christakos G, Bogaert P (1996) Spatiotemporal analysis of springwater ion processes derived from measurements at the Dyle Basin in Belgium. IEEE Trans Geosci Remote Sens 34(3):626–642CrossRefGoogle Scholar
  10. Christakos G, Hristopulos DT (1998) Spatiotemporal environmental health modelling. Kluwer, BostonGoogle Scholar
  11. Christakos G, Kolovos A (1999) A study of the spatiotemporal health impacts of ozone exposure. J Expo Anal Environ Epidemiol 9(4):322–335CrossRefGoogle Scholar
  12. Christakos G, Lai J (1997) A study of the breast cancer dynamics in North Carolina. Soc Sci Med D Med Geogr 45(10):1503–1517Google Scholar
  13. Christakos G, Bogaert P, Serre ML (2002) Temporal GIS. Springer, New York (with CD-ROM)Google Scholar
  14. Christakos G, Kolovos A, Serre ML, Vukovich F (2004) Total ozone mapping by integrating data bases from remote sensing instruments and empirical models. Geosci Remote Sens 42(5):991–1008CrossRefGoogle Scholar
  15. Christakos G, Olea RA, Serre ML, Yu HL, Wang L-L (2005) Interdisciplinary public health reasoning and epidemic modelling: the case of black death. Springer, New YorkGoogle Scholar
  16. Christakos G, Olea RA, Yu H-L (2007) Recent results on the spatiotemporal modelling and comparative analysis of Black Death and Bubonic Plague epidemics. J Public Health (in press)Google Scholar
  17. Cressie N, Huang HC (1999) Classes of nonseparable, spatio-temporal stationary covariance functions. J Am Stat Assoc 94:1330–1340CrossRefGoogle Scholar
  18. Cromley EK, McLafferty SL (2002) GIS and public health. The Guilford Press, New YorkGoogle Scholar
  19. Douaik A, Van Meirvenne M, Tóth T, Serre ML (2004) Space–time mapping of soil salinity using probabilistic Bayesian maximum entropy. Stoch Environ Res Risk Assess 18:219–227CrossRefGoogle Scholar
  20. Douaik A, Van Meirvenne M, Toth T (2005) Soil salinity mapping using spatio-temporal kriging and Bayesian maximum entropy with interval soft data. Geoderma 128:234–248CrossRefGoogle Scholar
  21. Ebi KL, Smith J, Burton I (2005) Integration of public health with adaptation to climate change. Taylor & Francis, OxfordGoogle Scholar
  22. Gatrell AC (2002) Geographies of Health. Blackwell, MaldenGoogle Scholar
  23. Goodall C, Mardia KV (1994) Challenges in multivariate spatio-temporal modeling. In Proceedings of the XVIIth International Biometric Conference, 1–17, August 8–12, 1994, Hamilton, Ontario, CanadaGoogle Scholar
  24. Haas TC (1995) Local prediction of spatio-temporal process with an application to wet sulfate deposition. J Am Stat Assoc 90:1189–1199CrossRefGoogle Scholar
  25. Haggett P (2000) The geographical structure of epidemics. Clarendon Press, OxfordGoogle Scholar
  26. Keil FC, Wilson RA (eds) (2000) Explanation and cognition. The MIT Press, CambridgeGoogle Scholar
  27. Knorr Cetina K (1999) Epistemic cultures: how the sciences make knowledge. Harvard University Press, CambridgeGoogle Scholar
  28. Kolovos A, Christakos G, Serre ML, Miller CT (2002) Computational BME solution of a stochastic advection-reaction equation in the light of site-specific information. Water Resour Res 38(12):1318–1334CrossRefGoogle Scholar
  29. Kolovos A, Christakos G, Hristopulos DT, Serre ML (2004) Methods for generating non-separable spatiotemporal covariance models with potential environmental applications. Adv Water Resour 27:815–830CrossRefGoogle Scholar
  30. Kolovos A, Yu H-L, Christakos G (2006) SEKS–GUI v.0.6 user manual. Department of Geography, San Diego State University, San DiegoGoogle Scholar
  31. Kyriakidis PC, Journel AG (1999) Geostatistical space–time models: a review. Math Geol 31(6):651–684CrossRefGoogle Scholar
  32. Law DCG, Bernstein K, Serre ML, Schumacher CM, Leone PA, Zenilman JM, Miller WC, Rompalo AM (2006) Modeling an early syphilis outbreak through space and time using the Bayesian maximum entropy approach. Ann Epidemiol 16(11):797–804CrossRefGoogle Scholar
  33. Ma C (2003) Spatio-temporal stationary covariance models. J Multivariate Anal 86:97–107CrossRefGoogle Scholar
  34. Meyer J-JCh, Van Der Hoek W (2004) Epistemic logic for AI and computer science. Cambridge University Press, CambridgeGoogle Scholar
  35. Olea RA (1999) Geostatistics for engineers and earth scientists. Kluwer, BostonGoogle Scholar
  36. Olea R (2006) A six-step practical approach to semivarogram modeling. J Stoch Environ Res Risk Assess 20(5):1436–3240Google Scholar
  37. Orton TG, Lark RM (2007) Accounting for the uncertainty in the local mean in spatial prediction by BME. J Stoch Environ Res Risk Assess 21 (in press)Google Scholar
  38. Quilfen Y, Chapron B, Collard F, Serre ML (2004) Calibration/validation of an altimeter wave period model and application to TOPEX/Poseidon and Jason-1 Altimeters. Marine Geodesy 27:535–550CrossRefGoogle Scholar
  39. Rescher N (2005) Epistemic logic: a survey of the logic of knowledge. University of Pittsburgh Press, PittsburghGoogle Scholar
  40. Savelieva E, Demyanov V, Kanevski M, Serre ML, Christakos G (2005) BME-based uncertainty assessment of the Chernobyl fallout. Geoderma 128:312–324CrossRefGoogle Scholar
  41. Serre ML, Christakos G (1999) Modern geostatistics: computational BME in the light of uncertain physical knowledge—the Equus Beds study. Stoch Environ Res Risk Assess 13(1):1–26CrossRefGoogle Scholar
  42. Serre ML, Bogaert P, Christakos G (1998) Computational investigations of Bayesian maximum entropy spatiotemporal mapping. In: Buccianti A, Nardi G, Potenza R (eds) 4th Annual Conference, vol 1, De Frede Editore, Naples, Italy, pp 117–122Google Scholar
  43. Serre ML, Kolovos A, Christakos G, Modis K (2003) An application of the holistochastic human exposure methodology to naturally occurring Arsenic in Bangladesh drinking water. Risk Anal 23(3):515–528CrossRefGoogle Scholar
  44. Stein ML (2005) Space–time covariance functions. J Am Stat Assoc 100:310–321CrossRefGoogle Scholar
  45. Wibrin M-A, Bogaert P, Fasbender D (2006) Combining categorical and continuous spatial information within the Bayesian maximum entropy paradigm. Stoch Environ Res Risk Assess 20:423–434CrossRefGoogle Scholar
  46. Yu H-L, Christakos G (2006) Spatiotemporal modelling and mapping of the bubonic plague epidemic in India. Int J Health Geogr, On-line Journal 5(12).

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Hwa-Lung Yu
    • 1
  • Alexander Kolovos
    • 2
  • George Christakos
    • 1
  • Jiu-Chiuan Chen
    • 3
  • Steve Warmerdam
    • 1
  • Boris Dev
    • 1
  1. 1.Department of GeographySan Diego State UniversitySan DiegoUSA
  2. 2.SAS Institute, Inc.CaryUSA
  3. 3.Department of EpidemiologyUniversity of North CarolinaChapel HillUSA

Personalised recommendations