Bayesian stochastic modelling for avalanche predetermination: from a general system framework to return period computations

  • N. Eckert
  • E. Parent
  • M. Naaim
  • D. Richard
Original Paper


Stochastic models are recent but unavoidable tools for snow avalanche hazard mapping that can be described in a general system framework. For the computation of design return periods, magnitude and frequency have to be evaluated. The magnitude model consists of a set of physical equations for avalanche propagation associated with a statistical formalism adapted to the input–output data structure. The friction law includes at least one latent friction coefficient. The Bayesian paradigm and the associated simulation techniques assist considerably in performing the inference and taking estimation errors into account for prediction. Starting from the general case, simplifying hypotheses allows computing the predictive distribution of high return periods on a case-study. Only release and runout altitudes are considered so that the model can use the French database. An inversible propagation model makes it possible to work with the latent friction coefficient as if it is observed. Prior knowledge is borrowed from an avalanche path with similar topographical characteristics. Justifications for the working hypotheses and further developments are discussed. In particular, the whole approach is positioned with respect to both deterministic and stochastic hydrology.


Avalanche predetermination Stochastic framework Return period Bayesian modelling Hydrology Prior knowledge 


  1. Abbott MB, Bathurst JC et al (1986) An introduction to the European Hydrological System—Système Hydrologique Européen, ’SHE’, 1: History and philosophy of a physically-based distributed modelling system. J Hydrol 87:45–59CrossRefGoogle Scholar
  2. Adjel G (1996) Méthodes statistiques pour la détermination de la distance d’arrêt maximale des avalanches. Thèse de doctorat. Université Joseph Fourrier, Grenoble, France, p 156Google Scholar
  3. Ancey C (2005) Monte Carlo calibration of avalanches described as Coulomb fluid flows. Philos Trans R Soc Lond A 363:1529–1550 (doi: 10.1098/rsta.2005.1593)Google Scholar
  4. Ancey C, Gervasoni C, Meunier M (2004) Computing extreme avalanches. Cold Reg Sci Technol 39:161–184CrossRefGoogle Scholar
  5. Bakkehoi S, Dormaas U, Lied K (1983) Calculation of snow avalanche runout distance. Ann Glaciol 4:24–29Google Scholar
  6. Barbolini M, Keylock CJ (2002) A new method for avalanche hazard mapping using a combination of statistical and deterministic models. Nat Hazard Earth Syst Sci 2:239–245CrossRefGoogle Scholar
  7. Barbolini M, Gruber U, Keylock CJ, Naaim M, Salvi F (2000) Application of statistical and hydraulic-continuum dense-snow avalanche models to five real European sites. Cold Reg Sci Technol 31:133–149CrossRefGoogle Scholar
  8. Bartelt P, Salm B, Gruber U (1999) Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. J Glaciol 45:242–254Google Scholar
  9. Bayes T (1763) Essay towards solving a problem in the doctrine of chances. Philos Trans R Soc Lond 53:370–418; 54:296–325Google Scholar
  10. Berger JO (1985) Statistical decision theory and Bayesian analysis, 2nd edn. Springer, Heidelberg, p 617Google Scholar
  11. Bergström S (1995) The HBV model. In: Singh VP (ed) Computer models in watershed hydrology. Water Resources Publications, Colorado, pp 443–476Google Scholar
  12. Berliner M (2003) Physical-statistical modelling in geophysics. J Geophys Res 108(D24) (doi:10.1029/2002JD002865)Google Scholar
  13. Bernardo JM, Smith AFM (1994) Bayesian theory. Wiley, LondonGoogle Scholar
  14. Best N, Richardson S, Thomson A (2004) A comparison of Bayesian spatial models for disease mapping. Stat Methods Med Res 14(1):35–59CrossRefGoogle Scholar
  15. Beven K (1989) Changing ideas in hydrology—the case of physically-based models. J Hydrol 105:157–172CrossRefGoogle Scholar
  16. Bouchet A (2003) Etude expérimentale des avalanches denses de neige sèche. Thèse de doctorat. Université Joseph Fourrier, Grenoble, France, p 132Google Scholar
  17. Bozhinskiy AN, Nazarov AN, Chernouss PA (2001) Avalanches: a probabilistic approach to modelling. Ann Glaciol 32:255–258CrossRefGoogle Scholar
  18. Brooks SP (2003) Bayesian computation: a statistical revolution. Trans R Stat Soc Ser A 15:2681–2697Google Scholar
  19. Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7(4):434–455CrossRefGoogle Scholar
  20. Casassa G, Narita H, Maeno N (1989) Measurements of friction coefficients of snow blocks. Ann Glaciol 13:40–44Google Scholar
  21. Christen M, Bartelt P, Gruber U (2002) Aval-1D: an avalanche dynamics program for the practice. In: Proceedings of the INTERPRAEVENT congress, vol 2, Matsumoto, Japan. Congress publication, pp 715–725Google Scholar
  22. Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8:2–14CrossRefGoogle Scholar
  23. Coles S (2001) An introduction to statistical modelling of extreme values. Springer, HeidelbergGoogle Scholar
  24. Congdon P (2001) Bayesian satistical modelling. Wiley, London, 431pGoogle Scholar
  25. Eckert N, Parent E (2006) Monte Carlo calibration of a dynamic model for avalanche predetermination using the Metropolis–Hastings algorithm. In: Proceedings of the 3rd international conference on avalanches and related subjects, Kirovsk, RussiaGoogle Scholar
  26. Eckert N, Parent E, Richard D (2006a) Revisiting statistical–topographical methods for avalanche predetermination: Bayesian modelling for runout distance predictive distribution. Cold Reg Sci Technol (accepted)Google Scholar
  27. Eckert N, Parent E, Belanger L et al (2006b) Hierarchical modelling for spatial analysis of avalanche frequency at the scale of the township. Cold Reg Sci Technol (accepted)Google Scholar
  28. Edijatno Nascimento NdO, Yang X, Makhlouf Z, Michel C (1999) GR3J: a daily watershed model with three free parameters. Hydrol Sci 4:263–277CrossRefGoogle Scholar
  29. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–72Google Scholar
  30. Grêt-Regamey A, Straub D (2006) Spatially explicit avalanche risk assessment linking Bayesian networks to a GIS. Nat Hazard Earth Syst Sci 6:911–926Google Scholar
  31. Gruber U, Bartelt P, Haefner H (1998) Avalanche hazard mapping using numerical Voellmy-fluid models. In: Proceedings of the anniversary conference 25 years of snow avalanche research. Voss, Norway, pp 117–121Google Scholar
  32. Gubler H (1993) Dense-flow avalanches, a discussion of experimental results and basic processes. In: Proceedings of the international workshop on rapid gravitational mass movements. Cemagref Grenoble, France, pp 127–136Google Scholar
  33. Harbitz C, Issler D, Keylock CJ (1998) Conclusions from a recent survey of avalanche computational models. In: Proceedings of the anniversary conference 25 years of snow avalanche research, Voss, 12–16 May. Norvegian Geotechnical Institute publication, 203, pp 128–139Google Scholar
  34. Harbitz C, Harbitz A, Farrokh N (2001) On probability analysis in snow avalanche hazard zoning. Ann Glaciol 32:290–298CrossRefGoogle Scholar
  35. Hutter K, Koch T, Plüss C, Savage S (1995) The dynamics of avalanches of granular materials from initiation to runout, part II: laboratory experiments. Acta Mech 109:127–165CrossRefGoogle Scholar
  36. Issler D (1997) Modelling of snow entrainment and deposition in powder snow avalanches. Ann Glaciol 26:253–258Google Scholar
  37. Jamard AL, Garcia S, Bélanger L (2002) L’enquête permanente sur les Avalanches (EPA). Statistique descriptive générale des événements et des sites. DESS Ingéniérie Mathématique option Statistique, Université Joseph Fourrier, Grenoble, France. Avalaible online at p 101
  38. Jeffreys H (1939) Theory of probability. Oxford University Press, New YorkGoogle Scholar
  39. Jibson RW, Harp EL, Michael JA (2000) A method for producing digital probabilistic seismic landslide hazard maps. Eng Geol 58:271–299CrossRefGoogle Scholar
  40. Kadane JB, Wolson LJ, O’Hagan A, Craig K (1998) Papers on elicitation with discussions. Statistician, pp 3–53Google Scholar
  41. Karniadakis GE, Glimm J (2006) Uncertainty quantification in simulation science—preface. J Comput Phys 217:1–4CrossRefGoogle Scholar
  42. Kavetski D, Franks SW, Kuczera G (2002) Confronting input uncertainty in environmental modelling. In: Duan Q, Gupta HV, Sorooshian S, Rousseau AN, Turcotte R (eds) Calibration of watershed models. AGU Water Science and Applications Series 6, pp 49–68Google Scholar
  43. Keylock CJ (2005). An alternative form for the statistical distribution of extreme avalanche runout distances. Cold Reg Sci Technol 42:185–193CrossRefGoogle Scholar
  44. Keylock CJ, Barbolini M (2001) Snow avalanche impact pressure—vulnerability relations for use in risk assessment. Can Geotech J 38:227–238CrossRefGoogle Scholar
  45. Kokkonen T, Koivusalo H, Karvonen T (2001) A semi-distributed approach to rainfall-runoff modelling: a case study in a snow affected catchment. Environ modell Softw 16:481–493CrossRefGoogle Scholar
  46. Krzysztofowicz R (1983) Why should a forecaster and a decision maker use Bayes Theorem. Water Resour Res 19(2):327–336CrossRefGoogle Scholar
  47. Krzysztofowicz R (2001) The case of probabilistic forecasting in hydrology. J Hydrol 249:2–9CrossRefGoogle Scholar
  48. Kuczera G, Parent E (1998) Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm. J Hydrol (211)1–4, pp 69–85Google Scholar
  49. Lauritzen S (1996) Graphical models. Oxford University Press, New YorkGoogle Scholar
  50. Lied K, Bakkehoi S (1980) Empirical calculations of snow-avalanche run-out distances based on topographic parameters. J Glaciol 26(94):165–176Google Scholar
  51. Maggioni M (2004) Avalanche release Areas and their influence on uncertainty in avalanche hazard mapping. Chapiter 2: Monte Carlo simulations. PhD Thesis, University of ZurichGoogle Scholar
  52. McClung D (2000) Extreme avalanche runout in space and time. Can Geotech J 37:161–170CrossRefGoogle Scholar
  53. McClung D (2001). Extreme avalanche runout: a comparison of empirical models. Can Geotech J 38:1254–1265CrossRefGoogle Scholar
  54. McClung D, Lied K (1987) Statistical and geometrical definition of snow-avalanche runout. Cold Reg Sci Technol 13:107–119CrossRefGoogle Scholar
  55. McClung D, Tweedy J (1994) Numerical avalanche prediction: Kootenay Pass, British Columbia, Canada. J Glaciol 40(135):350–358Google Scholar
  56. McClung D, Mears AI, Schearer P (1989) Extreme avalanche run-out: data from four mountain ranges. Ann Glaciol 13:180–185Google Scholar
  57. Mengersen KL, Robert CP, Guihennec-Jouyaux C (1999) MCMC convergence diagnostics: a review (with discussion). In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics. Oxford University Press, New York, pp 415–440Google Scholar
  58. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machine. J Chem Phys 21:1087–1091CrossRefGoogle Scholar
  59. Meunier M, Ancey C (2004) Towards a conceptual approach to predetermining high-return-period avalanche run-out distances. J Glaciol 50(169):268–278CrossRefGoogle Scholar
  60. Meunier M, Ancey C, Taillandier JM (2003) Fitting dynamic avalanche models with documented events at the Col du Lautaret site (France) using the conceptual approach. Cold Reg Sci Technol 39:55–66CrossRefGoogle Scholar
  61. Meunier M, Ancey C, Richard D (2004) L’approche conceptuelle pour l’étude des avalanches. Cemagref ed, p 245Google Scholar
  62. Micovic Z, Quick MC (1999) A rainfall and snowmelt runoff modelling approach to flow estimation at ungauged sites in British Columbia. J Hydrol 226:101–120CrossRefGoogle Scholar
  63. Mougin P (1922). Les avalanches en Savoie. Ministère de l‘Agriculture, Direction Générale des Eaux et Forêts, Service des Grandes Forces Hydrauliques, Paris, France, pp 175–317Google Scholar
  64. Naaim M (1998) Contribution to snow drift and avalanches flows modelling. Habilitation Thesis. University Joseph Fourier, Grenoble, France, p 180Google Scholar
  65. Naaim M, Naaim-Bouvet F, Faug T, Bouchet A (2004) Dense snow avalanche modelling: flow, erosion, deposition and obstacle effects. Cold Reg Sci Technol 39:193–204CrossRefGoogle Scholar
  66. Naveau P, Nogaj M, Amman C et al (2005) Statistical methods for the analysis of climate extremes. C R Geosci 335:1013–1022CrossRefGoogle Scholar
  67. Oakley J, O’Hagan A (2004) Probabilistic sensitivity analysis of complex models: a Bayesain approach. J R Stat Soc B 66:651–659CrossRefGoogle Scholar
  68. Parent E, Bernier J (2003) Bayesian P.O.T. modelling for historical data. J Hydrol 274:95–108CrossRefGoogle Scholar
  69. Perrin C, Michel C, Andreassian V (2001) Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. J Hydrol 242:275–301CrossRefGoogle Scholar
  70. Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat 3:11–130Google Scholar
  71. Robert CP, Casella G (1998) Monte Carlo statistical methods. Springer, HeidelbergGoogle Scholar
  72. Salm B, Burkard A, Gubler HU (1990) Berechnung von Fliesslawinen: eine Anleitung für Praktiker mit Beispilen. SLF Davos technical report 47Google Scholar
  73. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215CrossRefGoogle Scholar
  74. Savage S, Hutter K (1991) The dynamics of avalanches of granular materials from initiation to runout, part 1: analysis. Acta Mech 86:201–233CrossRefGoogle Scholar
  75. Sigurdsson S, Jonasson K, Arnalds K (1998) Transferring avalanches between paths. In: Proceedings of the anniversary conference 25 years of snow avalanche research, Voss, 12–16 May. Norvegian Geotechnical Institute publication 203, pp 259–263Google Scholar
  76. Sovilla B (2004) Field experiments and numerical modelling of mass entrainment and deposition processes in snow avalanches. PhD Thesis, ETH Zurich, SwitzerlandGoogle Scholar
  77. Sovilla B, Sommavilla F, Tomaselli A (2001) Measurements of mass balance in dense snow avalanche events. Ann Glaciol 32:230–236CrossRefGoogle Scholar
  78. Spiegelhalter DJ, Thomas DJ, Best A (2000) WinBUGS version 1.3 user manual. MRC Biostatistics UnitGoogle Scholar
  79. Tanner MH (1992) Tools for statistical inference: observed data and data augmentation methods. Springer, HeidelbergGoogle Scholar
  80. Torre F, Boreux J-J, Parent E (2001) The Metropolis–Hastings Algorithm, a handy tool for the practice of environmental model estimation: illustration with biochemical oxygen demand data. Cybergéo, article#187, 34 pp. Available at
  81. Voellmy A (1955) Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung, Jahrg, 73, 12, pp 159–162, 212–217, 246–249 and 280–285Google Scholar
  82. Zwinger T (2000) Dynamik einer Trockenschneelawine auf beliebig geformten Berghängen. PhD Thesis, Technische Universität WienGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.UR ETNA, Cemagref GrenobleSaint Martin d’HèresFrance
  2. 2.Equipe MORSE, UMR 518 ENGREF/INRA/INAPGParis cedex 15France

Personalised recommendations