Advertisement

Pioneer root invasion and fibrous root development into disturbed soil space observed with a flatbed scanner method

  • 40 Accesses

Abstract

Key Message

Fine roots with thick diameter preferentially elongated into disturbed soil space, indicating positive invasion of pioneer roots that recolonize distal root systems.

Abstract

Fine roots and their morphological traits are related to below-ground resource dynamics at physiological and ecological levels. Established approaches for investigating fine root dynamics inevitably cause artificial soil disturbance due to root excavation or instrument installation into the soil. Soil disturbance can have considerable effects on fine root dynamics. The aim of the present study was to clarify the temporal changes of morphological traits of fine roots produced after soil disturbance. The flatbed scanner method was employed in cypress (Chamaecyparis obtusa Endl.) and deciduous oak (Quercus serrata Thunb.) stands, and changes in length and diameter of elongated roots were measured for 4 years after soil disturbance. In both stands, specific trends of diameter and length production of fine roots were observed. Root length production increased extensively, and diameter was greater in an initial phase after soil disturbance. However, temporal patterns varied between the two stands. Soil disturbance affected fine root dynamics for a longer duration in the cypress stand, but more intensively in the oak stand. These results indicate that soil disturbance can affect fine root morphology and can induce invasion of thick fine roots, which are traditionally grouped as pioneer roots. Moreover, the results showed high length production continued for a longer period than that of larger diameter roots, suggesting recolonization of fine root systems by elongating pioneer roots followed by the branching of absorptive fibrous roots in order to recover root uptake capacity lost due to soil disturbance.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Addo-Danso SD, Prescott CE, Smith AR (2016) Methods for estimating root biomass and production in forest and woodland ecosystem carbon studies: a review. For Ecol Manag 359:332–351. https://doi.org/10.1016/j.foreco.2015.08.015

  2. Caplan JS, Meiners SJ, Flores-Moreno H, McCormack ML (2019) Fine-root traits are linked to species dynamics in a successional plant community. Ecology 100:1–14. https://doi.org/10.1002/ecy.2588

  3. Dannoura M, Kominami Y, Oguma H, Kanazawa Y (2008) The development of an optical scanner method for observation of plant root dynamics. Plant Root 2:14–18. https://doi.org/10.3117/plantroot.2.14

  4. Ding Y, Leppälammi-Kujansuu J, Helmisaari HS (2019) Fine root longevity and below- and aboveground litter production in a boreal Betula pendula forest. For Ecol Manag 431:17–25. https://doi.org/10.1016/j.foreco.2018.02.039

  5. Eissenstat DM (1991) On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks. New Phytol 118:63–68. https://doi.org/10.1111/j.1469-8137.1991.tb00565.x

  6. Eissenstat DM, Achor DS (1999) Anatomical characteristics of roots of citrus rootstocks that vary in specific root length. New Phytol 141:309–321. https://doi.org/10.1046/j.1469-8137.1999.00342.x

  7. Eissenstat DM, Caldwell MM (1989) Invasive root growth into disturbed soil of two tussock grasses that differ in competitive effectiveness. Funct Ecol 3:345. https://doi.org/10.2307/2389375

  8. Finér L, Messier C, De Grandpré L (1997) Fine-root dynamics in mixed boreal conifer—broad-leafed forest stands at different successional stages after fire. Can J For Res 27:304–314. https://doi.org/10.1139/x96-170

  9. Guo D, Li H, Mitchell RJ et al (2008) Fine root heterogeneity by branch order : resolving the discrepancy in root longevity and turnover estimates between minirhizotron and C isotopic methods. New Phytol 177:443–456. https://doi.org/10.1111/j.1469-8137.2007.02242.x

  10. Head GC (1973) Shedding of roots. In: Shedding Plant Parts, pp 237–293

  11. Hendrick RL, Pregitzer KS (1993) The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Can J For Res 23:2507–2520. https://doi.org/10.1139/x93-312

  12. Hishi T (2007) Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions. J For Res 12:126–133. https://doi.org/10.1007/s10310-006-0260-5

  13. Hishi T, Takeda H (2005) Dynamics of heterorhizic root systems: protoxylem groups within the fine-root system of Chamaecyparis obtusa. New Phytol 167:509–521. https://doi.org/10.1111/j.1469-8137.2005.01418.x

  14. Janssens IA, Sampson DA, Curiel-Yuste J et al (2002) The carbon cost of fine root turnover in a Scots pine forest. For Ecol Manag 168:231–240. https://doi.org/10.1016/S0378-1127(01)00755-1

  15. Johnson MG, Tingey DT, Phillips DL, Storm MJ (2001) Advancing fine root research with minirhizotrons. Environ Exp Bot 45:263–289

  16. Joslin JD, Wolfe MH (1999) Disturbances during minirhizotron installation can affect root observation data. Soil Sci Soc Am J 63:218–221. https://doi.org/10.2136/sssaj1999.03615995006300010031x

  17. Joslin JD, Gaudinski JB, Torn MS et al (2006) Fine-root turnover patterns and their relationship to root diameter and soil depth in a 14 C-labeled hardwood forest. New Phytol 172(3):523–535

  18. Ma Z, Guo D, Xu X et al (2018) Evolutionary history resolves global organization of root functional traits. Nature 555:94–97. https://doi.org/10.1038/nature25783

  19. Malhi Y, Doughty C, Galbraith D (2011) The allocation of ecosystem net primary productivity in tropical forests. Philos Trans R Soc B Biol Sci 366:3225–3245. https://doi.org/10.1098/rstb.2011.0062

  20. Mason GF, Bhar DS, Hilton RJ (1970) Root growth studies on Mugho pine. Can J Bot 48:43–47

  21. McCormack ML, Dickie IA, Eissenstat DM et al (2015) Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol 207:505–518. https://doi.org/10.1111/nph.13363

  22. Milchunas DG (2009) Estimating root production: Comparison of 11 methods in shortgrass steppe and review of biases. Ecosystems 12:1381–1402. https://doi.org/10.1007/s10021-009-9295-8

  23. Miyaura T (2009) Forest changes at Seta Hill after the World War II. A 2008 Report of the Satoyama Regional Symbiosis Studies Open Research Center, Ryukoku University (in Japanese)

  24. Montagnoli A, Terzaghi M, Giussani B et al (2018) An integrated method for high-resolution definition of new diameter-based fine root sub-classes of Fagus sylvatica L. Ann For Sci 75:76

  25. Montagnoli A, Dumroese RK, Terzaghi M et al (2019) Seasonality of fine root dynamics and activity of root and shoot vascular cambium in a Quercus ilex L. forest (Italy). For Ecol Manag 431:26–34

  26. Nadelhoffer KJ, Raich JW (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73:1139–1147

  27. Nakahata R, Osawa A (2017) Fine root dynamics after soil disturbance evaluated with a root scanner method. Plant Soil. https://doi.org/10.1007/s11104-017-3361-3

  28. Phillips RP, Brzostek E, Midgley MG (2013) The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol 199:41–51. https://doi.org/10.1111/nph.12221

  29. Pregitzer K, DeForest J, Burton AJ et al (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:293–309. https://doi.org/10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2

  30. Price JS, Hendrick RL (1998) Fine root length production, mortality and standing root crop dynamics in an intensively managed sweetgum (Liquidambar styraciflua L.) coppice. Plant Soil 205:193–201. https://doi.org/10.1023/A:1004324714371

  31. Rewald B, Raveh E, Gendler T et al (2012) Phenotypic plasticity and water flux rates of Citrus root orders under salinity. J Exp Bot 63:2717–2727. https://doi.org/10.1093/jxb/err457

  32. Ruess RW, Hendrick RL, Burton AJ et al (2003) Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecol Monogr 73:643–662. https://doi.org/10.1890/02-4032

  33. Scott DW, Terrell GR (1987) Biased and unbiased cross-valiadation in density estimation. J Am Stat Assoc 82:1131–1146

  34. Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic Press, Cambridge

  35. Steingrobe B, Schmid H, Claassen N (2000) The use of the ingrowth core method for measuring root production of arable crops—influence of soil conditions inside the ingrowth core on root growth. J Plant Nutr Soil Sci 163:617–622. https://doi.org/10.1002/1522-2624(200012)163:6%3c617:AID-JPLN617%3e3.0.CO;2-0

  36. Steingrobe B, Schmid H, Claassen N (2001) The use of the ingrowth core method for measuring root production of arable crops—influence of soil and root disturbance during installation of the bags on root ingrowth into the cores. Eur J Agron 15:143–151. https://doi.org/10.1016/S1161-0301(01)00100-9

  37. Valverde-Barrantes OJ, Smemo KA, Blackwood CB (2015) Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Funct Ecol 29:796–807. https://doi.org/10.1111/1365-2435.12384

  38. Vamerali T, Bandiera M, Mosca G (2012) Minirhizotrons in modern root studies. In: Mancuso S (ed) Measuring roots: an updated approach. Springer, Berlin

  39. Vogt KA, Vogt DJ, Palmiotto PA et al (1995) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil Int J Plant Soil Relatsh 187:159–219

  40. Wand MP, Jones MC (1994) Kernel smoothing. Chapman and Hall/CRC, New York

  41. Wood SN (2003) Thin plate regression splines. J R Stat Soc Ser B Stat Methodol 65:95–114. https://doi.org/10.1111/1467-9868.00374

  42. Xia M, Guo D, Pregitzer KS (2010) Ephemeral root modules in fraxinus mandshurica. New Phytol 188:1065–1074. https://doi.org/10.1111/j.1469-8137.2010.03423.x

  43. Yamato M, Iwase K (2005) Community analysis of arbuscular mycorrhizal fungi in a warm-temperate deciduous broad-leaved forest and introduction of the fungal community into the seedlings of indigenous woody plants. Mycoscience 46:334–342. https://doi.org/10.1007/s10267-005-0256-6

  44. Zadworny M, Eissenstat DM (2011) Contrasting the morphology, anatomy and fungal colonization of new pioneer and fibrous roots. New Phytol 190:213–221. https://doi.org/10.1111/j.1469-8137.2010.03598.x

Download references

Acknowledgements

I thank T. Miyaura and Satoyama Research Center of Ryukoku University who allowed us the use of Ryukoku Forest for data and sample collection. A. Osawa is gratefully acknowledged for creating the study environment, providing image data of fine roots and correcting my manuscript. Fellow students, including J. An, H. Schäfer, Y. Kameda, H. Nakamura, K. Hattori, A. Kawamura, M. Ishii, helped various aspects of the study particularly for image acquisition by root scanners or stand measurement. Y. Kameda also supported me for the image analysis. In addition, I am grateful to M. Dannoura for giving useful comments and checking the manuscript in the process of revising, and I would like to thank Editage for English language editing.

Funding

The present study was supported in part by a Grant-in-Aid of Scientific Research no. 16 J10182 from the Japan Society for the Promotion of Science to R. N. (DC1).

Author information

Correspondence to Ryo Nakahata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Kyotaro Noguchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 784 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakahata, R. Pioneer root invasion and fibrous root development into disturbed soil space observed with a flatbed scanner method. Trees (2020). https://doi.org/10.1007/s00468-020-01953-4

Download citation

Keywords

  • Fine root
  • Morphology
  • Pioneer root
  • Scanner method
  • Soil disturbance