pp 1–10 | Cite as

Wood density in mangrove forests on the Brazilian Amazon coast

  • Paulo C. C. Virgulino-Júnior
  • Danilo C. L. Gardunho
  • Diego N. C. Silva
  • Marcus E. B. FernandesEmail author
Original Article
Part of the following topical collections:
  1. Biomechanics


Key message

Wood density varies among mangrove tree species and diameter size classes, reflecting ontogenetic strategies influenced by environmental conditions, such as the salinity gradient.


Wood density is one of the most widely used parameters for the description of the structure of a plant and its production of biomass/carbon, as well as its strategies of growth and survival in the context of varying environmental conditions. Data were compiled on the wood density of the three mangrove tree species [Rhizophora mangle L., Avicennia germinans (L.) L., and Laguncularia racemosa (L.) C. F. Gaertn.] that predominate on the Ajuruteua Peninsula in Bragança on the Amazon coast of the Brazilian state of Pará, focusing on the stem position and diameter classes. The influence of the salinity gradient on the wood density of A. germinans was analyzed based on the definition of the three zones of salinity defined from the mean salinity values ascertained from the principal tidal channels found on the peninsula. Wood density varied significantly among species, diameter classes, and saline zones, but not in relation to the position on the stem. Our findings indicate that the inter- and intra-specific variation found in the wood density of the mangrove trees is the result of the different levels of salinity found in the study area, mediated by the variation in the growth of the plant in response to desiccation and hypersalinity that occur at higher elevation in the intertidal zone. In addition, the A. germinans trees with the highest wood density were found in the most saline zone, where these mangrove trees present a reduced assimilation of carbon, which affects the spatial distribution of this species, its production of biomass, and carbon storage.


Rhizophora mangle Avicennia germinans Laguncularia racemosa Axial and radial wood density Tree growth Salinity gradient 



We acknowledge the staff of the Laboratório de Ecologia de Manguezal—Universidade Federal do Pará (UFPA) for providing logistical and technical support. The study was funded by Fundo Amazônia—Banco Nacional de Desenvolvimento Econômico Social (BNDES—Project no. 3052) and Fundação Amazônia de Amparo a Estudos e Pesquisas (FAPESPA)-Vale (ICAAF no. 068). We highly appreciated the dedicated work of field assistants (B. Prestes, E. Barroso, A. Júnior, F. Aviz, Gessé, and Virgílio). A special thanks to the editor and anonymous reviewers for their constructive comments, which substantially improved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adedeji GA, Ogunsanwo OY, John J (2013) Density variations in red mangrove (Rhizophora racemosa GFW Meyer) in Onne, River State, Nigeria. Int J Sci Nat 4:165–168Google Scholar
  2. Almeida SS (1996) Identificação e avaliação de impactos ambientais e uso da flora em manguezais paraenses. Boletim do Museu Paraense Emilio Goeldi, Ciências da Terra 8:31–46Google Scholar
  3. Anten NP, Schieving F (2010) The role of wood mass density and mechanical constraints in the economy of tree architecture. Am Nat 175:250–260CrossRefGoogle Scholar
  4. Ayres M, Ayres Júnior M, Ayres DL, Santos AA (2007) BIOESTAT—Aplicações estatísticas nas áreas das ciências biomédicas. ONG Mamirauá, BelémGoogle Scholar
  5. Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Lewis SL (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Change Biol 10:545–562. CrossRefGoogle Scholar
  6. Ball MC (1988) Ecophysiology of mangroves. Trees 2:129–142CrossRefGoogle Scholar
  7. Ball MC, Farquhar GD (1984) Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions. Plant Physiol 74:1–6CrossRefGoogle Scholar
  8. Bolza E, Keating WG (1972) African Timbers – The Properties, Uses and Characteristics of 700 Species. CSIRO, Division of Building Research, MelbourneGoogle Scholar
  9. Carsan S, Orwa C, Harwood C, Kindt R, Stroebel A, Neufeldt H, Jamnadass R (2012) African wood density database. World Agroforestry Centre, NairobiGoogle Scholar
  10. Chave J (2005) Measuring wood density for tropical forest trees. A field manual for the CTFS sites— Accessed 09 Jan 2017
  11. Chave J, Muller-Landau HC, Baker TR, Easdale TA, Ter Steege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl 16:2356–2367CrossRefGoogle Scholar
  12. Chave J, Coomes DA, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. CrossRefGoogle Scholar
  13. Chudnoff M (1984) Tropical Timbers of the World. USDA Forest Service, Washington, DC. Accessed 15 Jan 2017
  14. Cochard H (2006) Cavitation in trees. C R Phys 7:1018–1026CrossRefGoogle Scholar
  15. Cohen MC, Lara RJ (2003) Temporal changes of mangrove vegetation boundaries in Amazonia: application of GIS and remote sensing techniques. Wetl Ecol Manag 11:223–231CrossRefGoogle Scholar
  16. Cohen MC, Souza Filho PW, Lara RJ, Behling H, Angulo RJ (2005) A model of Holocene mangrove development and relative sea-level changes on the Bragança Peninsula (northern Brazil). Wetl Ecol Manag 13:433–443CrossRefGoogle Scholar
  17. Détienne P, Jacquet P, Mariaux A (1982). Manuel d’identification des bois tropicaux: Tome 3: Guyane française. Editions QuaeGoogle Scholar
  18. DHN (2013) Diretoria de Hidrografia e Navegação, Marinha do Brasil. Accessed 10 Dec 2016
  19. Djomo AN, Ngoukwa G, Zapfack L, Chimi CD (2017) Variation of wood density in tropical rainforest trees. J For 4:16–26Google Scholar
  20. Fanshawe DB (1961) Forest products of British Guiana I: principal timbers. Forestry Bulletin (New Series). Forest Department, GeorgetownGoogle Scholar
  21. Fearnside PM (1997) Wood density for estimating forest biomass in Brazilian Amazonia. For Ecol Manag 90:59–87CrossRefGoogle Scholar
  22. Felfili JM, Fagg CW (2007) Floristic composition, diversity and structure of the “cerrado” sensu stricto on rocky soils in northern Goiás and southern Tocantins, Brazil. Revista Brasileira de Botânica 30:375–385Google Scholar
  23. Feller IC (1995) Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecol Monogr 65:477–505CrossRefGoogle Scholar
  24. Fernandes ME, Oliveira FP, Eyzaguirre IA (2018) Mangroves on the Brazilian Amazon Coast: uses and rehabilitation. In: Makowski C, Finkl CW (eds) Threats to Mangrove forests. Springer, Cham, pp 621–635CrossRefGoogle Scholar
  25. Gardunho DCL (2017) Estimativa de biomassa e carbono acima do solo das espécies arbóreas dominantes nas florestas de mangue da península de Ajuruteua, nordeste do Pará, Costa Amazônica brasileira Doctoral thesis, Universidade Federal do ParáGoogle Scholar
  26. Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461CrossRefGoogle Scholar
  27. Henry M, Besnard A, Asante WA, Eshun J, Adu-Bredu S, Valentini R, Saint-André L (2010) Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For Ecol Manag 260:1375–1388CrossRefGoogle Scholar
  28. Hidayat S, Simpson WT (1994) Use of green moisture content and basic specific gravity to group tropical woods for kiln drying. USDA FPL-RN-0263, MadisonGoogle Scholar
  29. Hoppe-Speer SC, Adams JB, Rajkaran A, Bailey D (2011) The response of the red mangrove Rhizophora mucronata Lam. To salinity and inundation in South Africa. Aquat Bot 95:71–76CrossRefGoogle Scholar
  30. Ilic J, Boland D, McDonald M, Downes G, Blakemore P (2000) Woody Density Phase 1 - State of Knowledge. National Carbon Accounting System Technical Report 18. Australian Greenhouse Office, CanberraGoogle Scholar
  31. INMET (2014) Instituto Nacional de Meteorologia. Banco de dados meteorológicos para ensino e pesquisa. Accessed 15 Jan 2017
  32. King DA, Davies SJ, Supardi MN, Tan S (2005) Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Funct Ecol 19:445–453CrossRefGoogle Scholar
  33. King DA, Davies SJ, Tan S, Noor NS (2006) The role of wood density and stem support costs in the growth and mortality of tropical trees. J Ecol 94:670–680CrossRefGoogle Scholar
  34. Kollmann FFP, Côté WA (1968) Principles of wood science and technology I: solid wood. Springer, BerlinCrossRefGoogle Scholar
  35. Komiyama A, Poungparn S, Kato S (2005) Common allometric equations for estimating the tree weight of mangroves. J Trop Ecol 21:471–477CrossRefGoogle Scholar
  36. Krauss KW, Lovelock CE, McKee KL, López-Hoffman L, Ewe SM, Sousa WP (2008) Environmental drivers in mangrove establishment and early development: a review. Aquat Bot 89:105–127CrossRefGoogle Scholar
  37. Kryn JM, Fobes EW (1959) The Woods of Liberia. Forest Products Laboratory Document No. 2159, Forest Service. U.S. Department of Agriculture, WisconsinGoogle Scholar
  38. Little EL, Wadesworth FH (1964) Common trees of Puerto Rico and the Virgin Islands, US Department of Agriculture, Agricultural Handbook 249, Superintendent of Documents. US Government Printing Office, Washington DCGoogle Scholar
  39. Lovelock CE, Feller IC, McKee KL, Thompson RC (2005) Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama. Caribb J Sci 41:456–464Google Scholar
  40. Lovelock CE, Ball MC, Choat B, Engelbrecht BM, Holbrook NM, Feller IC (2006) Linking physiological processes with mangrove forest structure: phosphorus deficiency limits canopy development, hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle. Plant Cell Environ 29:793–802CrossRefGoogle Scholar
  41. Lovelock CE, Krauss KW, Osland MJ, Reef R, Ball MC (2016) The physiology of mangrove trees with changing climate. In: Goldstein D, Santiago LS (eds) Tropical tree physiology: adaptations and responses in a changing environment. Springer, Cham, pp 149–179CrossRefGoogle Scholar
  42. Malavassi IMC (1992) Maderas de Costa Rica: 150 Especies forestales. Editorial de la Universidad de Costa Rica, San JoséGoogle Scholar
  43. Maniatis D, Saint André L, Temmerman M, Malhi Y, Beeckman H (2011) The potential of using xylarium wood samples for wood density calculations: a comparison of approaches for volume measurement. For Biogeosci For 4:150Google Scholar
  44. McCarthy-Neumann S, Kobe RK (2008) Tolerance of soil pathogens co-varies with shade tolerance across species of tropical tree seedlings. Ecology 89:1883–1892CrossRefGoogle Scholar
  45. Medeiros TCC, Sampaio EVSB (2008) Allometry of aboveground biomasses in mangrove species in Itamaracá, Pernambuco, Brazil. Wetlands Ecol Manag 16:323–330CrossRefGoogle Scholar
  46. Méndez-Alonzo R, Moctezuma C, Ordoñez VR, Angeles G, Martínez AJ, López-Portillo J (2015) Root biomechanics in Rhizophora mangle: anatomy, morphology and ecology of mangrove’s flying buttresses. Ann Bot 115:833–840CrossRefGoogle Scholar
  47. Menezes MPMD, Berger U, Mehlig U (2008) Mangrove vegetation in Amazonia: a review of studies from the coast of Pará and Maranhão States, north Brazil. Acta Amazon 38:403–420CrossRefGoogle Scholar
  48. Moraes BC, Costa JMN, Costa ACL, Costa MH (2005) Variação espacial e temporal da precipitação no estado do Pará. Acta Amazon 35:207–214CrossRefGoogle Scholar
  49. Naidoo G (2006) Factors contributing to dwarfing in the mangrove Avicennia marina. Ann Bot 97:1095–1101CrossRefGoogle Scholar
  50. Naidoo G (2009) Differential effects of nitrogen and phosphorus enrichment on growth of dwarf Avicennia marina mangroves. Aquat Bot 90:184–190CrossRefGoogle Scholar
  51. Naidoo G, Chirkoot D (2004) The effects of coal dust on photosynthetic performance of the mangrove, Avicennia marina in Richards Bay, South Africa. Environ Pollut 127:359–366CrossRefGoogle Scholar
  52. Nascimento-Júnior WR, Souza-Filho PWM, Proisy C, Lucas RM, Rosenqvist A (2013) Mapping changes in the largest continuous Amazonian mangrove belt using object-based classification of multisensor satellite imagery. Estuar Coast Shelf Sci 117:83–93CrossRefGoogle Scholar
  53. Oliva AG, Pulgar FP (1967) Caracteristicas fisico-mecanicas de las maderas españolas. Ministerio de Agricultura, Dirección general de montes, caza y pesca fluvial, Instituto Forestal de Investigaciones y Experiencias, MadridGoogle Scholar
  54. Panshin AJ, Zeeuw C (1982) Textbook of wood technology, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  55. Parida AK, Jha B (2010) Salt tolerance mechanisms in mangroves: a review. Trees 24:199–217CrossRefGoogle Scholar
  56. Parida AK, Das AB, Mittra B (2004) Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees 18:167–174CrossRefGoogle Scholar
  57. Patiño S, Lloyd J, Paiva R, Baker TR, Quesada CA, Mercado LM et al (2009) Branch xylem density variations across the Amazon Basin. Biogeosciences 6:545–568CrossRefGoogle Scholar
  58. Peìrez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234CrossRefGoogle Scholar
  59. Poorter L, Bongers L, Bongers F (2006) Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology 87:1289–1301CrossRefGoogle Scholar
  60. Preston KA, Cornwell WK, Denoyer JL (2006) Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytol 170:807–818CrossRefGoogle Scholar
  61. Reef R, Lovelock CE (2014) Regulation of water balance in mangroves. Ann Bot 115:385–395CrossRefGoogle Scholar
  62. Robert EMR, Schmitz N, Kirauni HA, Beeckman H, Koedam N (2009) Salinity fluctuations in mangrove forest of Gazi Bay, Kenya: lessons for future research. Nat Faune FAO 89–95Google Scholar
  63. Robert EM, Schmitz N, Boeren I, Driessens T, Herremans K, De Mey J, Van de Casteele E, Beeckman H, Koedam N (2011) Successive cambia: a developmental oddity or an adaptive structure? PLoS One 6:e16558CrossRefGoogle Scholar
  64. Robert EM, Jambia AH, Schmitz N, De Ryck DJ, De Mey J, Kairo JG, Dahdouh-Guebas F, Beeckman H, Koedam N (2014) How to catch the patch? A dendrometer study of the radial increment through successive cambia in the mangrove Avicennia. Ann Bot 113:741–752CrossRefGoogle Scholar
  65. Rumbold DG, Snedaker SC (1994) Do mangroves float? J Trop Ecol 10:281–284CrossRefGoogle Scholar
  66. Sadegh AN (2012) Variation of basic density in Eucalyptus camaldulensis dehnh wood grown in Iran. Middle East J Sci Res 11:1472–1474Google Scholar
  67. Santini NS, Schmitz N, Lovelock CE (2012) Variation in wood density and anatomy in a widespread mangrove species. Trees (Berl West) 26:1555–1563CrossRefGoogle Scholar
  68. Santini NS, Schmitz N, Bennion V, Lovelock CE (2013) The anatomical basis of the link between density and mechanical strength in mangrove branches. Funct Plant Biol 40:400–408CrossRefGoogle Scholar
  69. Santini NS, Reef R, Lockington DA, Lovelock CE (2015) The use of fresh and saline water sources by the mangrove Avicennia marina. Hydrobiologia 745:59–68CrossRefGoogle Scholar
  70. Saranpää P (2003) Wood density and growth. In: Barnett JR, Jeronimidis G (eds) Wood quality and its biological basis. Blackwell Publishing & CRC Press, Oxford, pp 87–117Google Scholar
  71. Schmitz N, Verheyden A, Beeckman H, Kairo JG, Koedam N (2006) Influence of a salinity gradient on the vessel characters of the mangrove species Rhizophora mucronata. Ann Bot 98:1321–1330CrossRefGoogle Scholar
  72. Schweingruber FH, Börner A, Schulze ED (2007) Atlas of woody plant stems: evolution, structure, and environmental modifications. Springer Science & Business Media, BerlinGoogle Scholar
  73. Sobrado MA (1999) Drought effects on photosynthesis of the mangrove, Avicennia germinans, under contrasting salinities. Trees 13:125–130Google Scholar
  74. Sobrado MA, Ball MC (1999) Light use in relation to carbon gain in the mangrove, Avicennia marina, under hypersaline conditions. Funct Plant Biol 26:245–251CrossRefGoogle Scholar
  75. Souza Filho PW (2005) Costa de manguezais de macromaré da Amazônia: cenários morfológicos, mapeamento e quantificação de áreas usando dados de sensores remotos. Revista Brasileira de Geofísica 23:427–435CrossRefGoogle Scholar
  76. StatSoft, Inc. (2007). STATISTICA (data analysis software system), version 8.0.
  77. Steinke T (1999) Mangroves in South African estuaries. In: Allanson BR, Baird D (eds) Estuaries of South Africa. Cambridge University Press, Cambridge, p 340Google Scholar
  78. Sterck FJ, Poorter L, Schieving F (2006) Leaf traits determine the growth-survival trade-off across rain forest tree species. Am Nat 167:758–765CrossRefGoogle Scholar
  79. Sturges HA (1926) The choice of a class interval. J Am Stat Assoc 21:65–66CrossRefGoogle Scholar
  80. Suárez N, Medina E (2005) Salinity effect on plant growth and leaf demography of the mangrove, Avicennia germinans L. Trees 19:722CrossRefGoogle Scholar
  81. Swenson NG, Enquist BJ (2007) Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am J Bot 94:451–459CrossRefGoogle Scholar
  82. Van Gelder HA, Poorter L, Sterck FJ (2006) Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytol 171:367–378CrossRefGoogle Scholar
  83. Vieira AS et al (2008) Estimation of biomass and carbon stocks: the case of the Atlantic Forest. Biota Neotrop. Google Scholar
  84. Vink AT (1983) Surinam Timbers. State Forest Industries, ParamariboGoogle Scholar
  85. Wang W, Yan Z, You S, Zhang Y, Chen L, Lin G (2011) Mangroves: obligate or facultative halophytes? A review. Trees 25:953–963CrossRefGoogle Scholar
  86. Wassenberg M, Chiu HS, Guo W, Spiecker H (2015) Analysis of wood density profiles of tree stems: incorporating vertical variations to optimize wood sampling strategies for density and biomass estimations. Trees 29:551–561CrossRefGoogle Scholar
  87. Williamson GB, Wiemann MC (2010) Measuring wood specific gravity. Correctly. Am J Bot 97:519–524CrossRefGoogle Scholar
  88. Yáñez-Espinosa L, Angeles G, López-Portillo J, Bárrales S (2009) Variación anatómica de la madera de Avicennia germinans en la Laguna de La Mancha, Veracruz, México. Bol Soc Bot México 85:7–15Google Scholar
  89. Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009) Data from: towards a worldwide wood economics spectrum. Dryad Digital Repos 1:1. Google Scholar
  90. Zobel BJ, Jett JB (1995) Genetics of wood production. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratório de Ecologia de Manguezal, Instituto de Estudos CosteirosUniversidade Federal do Pará, Campus de BragançaBragançaBrazil

Personalised recommendations