, Volume 33, Issue 6, pp 1549–1557 | Cite as

Growth of Sorbus torminalis after release from prolonged suppression

  • Patrick PyttelEmail author
  • Jörg Kunz
  • Josef Großmann
Original Article

Key message

Continuously suppressed S.torminalis trees were found to be highly sensitive to release cuttings. After release diameter growth increased drastically, the crown redensified from the inside and seeds were produced during the first growing season.


Sorbustorminalis is valued for its timber characteristics and ecological role in cultural landscapes. Due to its increased drought tolerance, the species is of growing interest in the context of silviculturally driven climate change adaptation measures. Due to its comparably slow growth, it often forms a second canopy layer below other deciduous tree species. With regard to its ecological and economic value, forest practitioners need to know whether releasing these continuously suppressed individuals from competition is worth it. Therefore, the objective of this study was to examine the effect of release cuttings on the crown growth and radial increment of S.torminalis heavily suppressed by surrounding sessile oaks (Quercuspetraea). We observed changes of shoot and diameter growth within the first year following release cuttings. The overall average annual shoot growth more than tripled when compared to pre-release growth patterns (from 1.9 to 6.2 cm). The greatest release effects were found in the inner part of the crown. The majority of the shoots forming the crown periphery developed fruits and showed only restrained increment. Crown redensification from inside was accompanied by the development of epicormic branches in previously branch-free bole sections. Following release cuttings, diameter growth increased by several orders of magnitude. Altogether, release cuttings seem to have a very positive effect on the vitality of continuously suppressed S.torminalis trees. All released trees grew vigorously and developed fruits throughout the crown surface. Thus, release cuttings may facilitate species propagation and reduce inbreeding effects.


Wild service tree Growth Radial increment Crown extension Crown redensification Epicormic branching 



The authors thank Erhard Schaefer, Dr. Herbert Kraft, Ralf Dübbers, and other members of the Bundesforstbetrieb Rhein-Mosel (Baumholder) for financial and technical assistance during fieldwork and research site establishment. We gratefully thank Anna Vorländer for her help in the acquisition of field data.


This work was based on a project funded by the Deutsche Bundesstiftung Umwelt (DBU, Project Number 25954-33/0). Additional Grants were given by the Georg-Ludwig-Hartig Foundation (GLH), and the Gesellschaft zur Förderung der forst- und holzwirtschaftlichen Forschung an der Universität Freiburg (GFH).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Altman J, Fibich P, Dolezal J, Aakala T (2014) A package for tree ring analysis of disturbance events in R. Dendrochronologia 32:107–112CrossRefGoogle Scholar
  2. Ammer C, Wörle A, Förster B, Breibeck J, Bachmann M (2011) Konkurrenz belebt das Geschäft—aber nicht bei der Elsbeere. LWF Wissen 67:24–28Google Scholar
  3. Angelone S, Hilfiker K, Holderegger R, Bergamini A, Hoebbee SE (2007) Regional population dynamics define the local genetic structure in Sorbus torminalis. Mol Ecol 16:1291–2130CrossRefGoogle Scholar
  4. Bayer D, Pretzsch H (2017) Reaction to gap emergence: Norway spruce increases growth while European beech features horizontal space occupation—evidence by repeated 3D TLS measurements. Silva Fenn 51:7748CrossRefGoogle Scholar
  5. Beaudet M, Messier C (1998) Growth and morphological responses of yellow birch, sugar maple, and beech seedlings growing under a natural light gradient. Can J For Res 28:1007–1015CrossRefGoogle Scholar
  6. Beyse R (2001) Die wenig bekannte Elsbeere. Österreichische Forstz 112:4Google Scholar
  7. Bigler C, Bugmann H (2003) Growth-dependent tree mortality models based on tree rings. Can J For Res 33:210–221CrossRefGoogle Scholar
  8. Blum BM (1963) Excessive exposure stimulates epicormic branching in young northern hardwoods. Research Note NE-9. US Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, Upper DarbyGoogle Scholar
  9. Devine WD, Harrington CA (2006) Changes in Oregon white oak (Quercus garryana Dougl. ex Hook.) following release from overtopping conifers. Trees 20:747–756CrossRefGoogle Scholar
  10. Elflein T, Wörle A, Ammer C (2008) Zur Reaktionsfähigkeit der Elsbeere (Sorbus torminalis [L.] Crantz) auf späte Kronenumlichtung. Forstarchiv 79:155–163Google Scholar
  11. Franke A, Ludwig U (1994) Vorkommen des Speierlings (Sorbus domestica L.) in Baden-Württemberg—Erfassung, Bewertung, Erhaltung. Mitteilungen der Forstlichen Versuchs- und Forschungsanstalt Baden-Württemberg, Heft 180Google Scholar
  12. Frech A (2006) Walddynamik in Mischwäldern des Nationalparks Hainich—Untersuchung der Mechanismen und Prognose der Waldentwicklung. Dissertation, Georg-August-Universität GöttingenGoogle Scholar
  13. Fujii T (2003) Application of the “NT-Cutter” knife blade to microtome sectioning of wood. IAWA J 24:241–245CrossRefGoogle Scholar
  14. Fussi B (2011) Die Elsbeere im »Gen-Fokus«: Lichte Bestandsstellungen fördern Genfluss und genetische Variabilität. LWF aktuell 82:33–34Google Scholar
  15. Gross J, Ligges U (2012) nortest: test for normality. R package version 1.0-2Google Scholar
  16. Haywood A (2002) Growth of advanced European beech trees in the transformation phase in the southern Black Forest. Dissertation, Albert-Ludwigs-Universität FreiburgGoogle Scholar
  17. Hemery GE (2008) Forest management and silvicultural responses to projected climate change impacts on European broadleaved trees and forests. Int For Rev 10:591–607Google Scholar
  18. Hochbichler E (2003) Die Elsbeere (Sorbus torminalis Crantz) im Weinviertel (Niederösterreich). Forst Holz 58:647–653Google Scholar
  19. Kahle M (2004) Untersuchungen zum Wachstum der Elsbeere (Sorbus torminalis [L.] Crantz) am Beispiel einiger Mischbestände in Nordrhein-Westfalen. Landesanstalt für Ökologie, Bodenordnung und Forsten NRW, LÖBF-Schriftennr. 21, GöttingenGoogle Scholar
  20. Kleinschmit J (1998) Erhaltung und Nutzung wertvoller Edellaubbaumarten. Forst Holz 53:515–519Google Scholar
  21. Kotar M (2001) Höhenwachstum der Elsbeere und des Speierlings. Corminaria 16:19–22Google Scholar
  22. Kraft G (1884) Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben. Klindworth, HannoverGoogle Scholar
  23. Kunz J, Löffler G, Bauhus J (2018) Minor European broadleaved tree species are more drought-tolerant than Fagus sylvatica but not more tolerant than Quercus petraea. For Ecol Manag 414:15–27CrossRefGoogle Scholar
  24. LÖBF (Landesanstalt für Ökologie, Bodenordnung und Forsten Nordrhein-Westfalen) (2004) Merkblatt zur Artenförderung—ElsbeereGoogle Scholar
  25. Maggs DH (1963) The reduction in growth of apple trees brought about by fruiting. J Hortic Sci 38:119–128CrossRefGoogle Scholar
  26. Mayer R (1957) Untersuchungen über Kronengröße und Zuwachsleistung der Traubeneiche auf süddeutschen Standorten. Dissertation, Ludwig-Maximilians-Universität MünchenGoogle Scholar
  27. Miller GW (2000) Effect of crown growing space on the development of young hardwood crop trees. N J Appl For 17:25–35Google Scholar
  28. Nicolescu V-N, Hochbichler E, Coello Gomez J, Ravagni S, Giulietti V (2009) Ecology and silviculture of wild service tree (Sorbus torminalis (L.) Crantz): a literature review. Die Bodenkultur 60:35–44Google Scholar
  29. Power SA (1994) Temporal trends in twig growth of Fagus sylvatica L. and their relationships with environmental factors. Forestry 67:13–30CrossRefGoogle Scholar
  30. Pyttel P, Kunz J, Bauhus J (2013) Growth, regeneration and shade tolerance of the Wild Service Tree (Sorbus torminalis (L.) Crantz) in aged oak coppice forests. Trees 27:1609–1619CrossRefGoogle Scholar
  31. Pyttel PL, Fischer UF, Suchomel C, Gärtner SM, Bauhus J (2013) The effect of harvesting on stump mortality and re-sprouting in aged oak coppice forests. For Ecol Manag 289:18–27CrossRefGoogle Scholar
  32. Pyttel P, Köhn M, Bauhus J (2015) Effects of different harvesting intensities on the macro nutrient pools in aged coppice forests. For Ecol and Manag 349:94–105CrossRefGoogle Scholar
  33. R Development Core Team (2011) R: a language and environment for statistical computing. R foundation for statistical computing, ViennaGoogle Scholar
  34. Reventlow DOJ, Nord-Larsen T, Skovsgaard JP (2018) Pre-commercial thinning in naturally regenerated stands of European beech (Fagus sylvatica L.): effects of thinning pattern, stand density and pruning on tree growth and stem quality. Forestry 92:120–132CrossRefGoogle Scholar
  35. Röhle H, Huber W (1985) Untersuchungen zur Methode der Ablotung von Kronenradien und der Berechnung von Kronengrundflächen. Forstarchiv 56:238–243Google Scholar
  36. Roloff A (2001) Baumkronen. Verständnis und praktische Bedeutung eines komplexen Naturphänomens. Ulmer, StuttgartGoogle Scholar
  37. Roloff A (2004) Bäume—Phänomene der Anpassung und Optimierung. Ecomed, Landsberg a. LGoogle Scholar
  38. Schrötter H (2001) Vogelkirsche, Spitzahorn und Elsbeere. Drei wertvolle Baumarten in Mecklenburg-Vorpommern im Abseits. Forst Holz 56:188–196Google Scholar
  39. Schüte G (2000) Waldbauliche in-situ und ex-situ Verjüngungskonzepte für Elsbeere (Sorbus torminalis [L.] Crantz). Dissertation, Georg-August-Universität GöttingenGoogle Scholar
  40. Schweingruber FH (1983) Der Jahrring. Standort, Methodik, Zeit und Klima in der Dendrochronologie. Verlag Paul Haupt, Bern, StuttgartGoogle Scholar
  41. Schweingruber FH (1996) Tree Rings and Environment. Dendroecology. Paul Haupt, Bern, Stuttgart, WienGoogle Scholar
  42. Suchomel C, Pyttel P, Bauhus J, Becker G (2012) Biomass equations for sessile oak (Quercus petraea (Matt.) Liebl.) and hornbeam (Carpinus betulus L.) in aged coppiced forests in southwest Germany. Biomass Bioenergy 46:722–730CrossRefGoogle Scholar
  43. Suzuki A (2002) Influence of shoot architectural position on shoot growth and branching patterns in Cleyera japonica. Tree Physiol 22:885–890CrossRefGoogle Scholar
  44. Werres JM (2018) Zur tierökologischen Bedeutung der Elsbeere (Sorbus torminalis L. CRANTZ). Dissertation, Rheinische Friedrich-Wilhelms-Universität, BonnGoogle Scholar
  45. Wilhelm GJ (2007) Sorbus am Ostrand des Pariser Beckens: Vorkommen und waldbauliche Behandlung. In: Maurer WD (ed) Tagungs- und Exkursionsführer zur Jahrestagung. Förderkreis Speierling, Trippstadt, pp 13–17Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Environment and Natural ResourcesAlbert-Ludwigs-University FreiburgFreiburg i.Br.Germany

Personalised recommendations