pp 1–10 | Cite as

Alpha monofluoro substitution at C5 in homotyphasterol enhances shoot production and multiplication rate of in vitro-grown marubakaido apple rootstock shoots

  • Adaucto B. Pereira-NettoEmail author
  • Javier A. Ramírez
  • Lydia R. Galagovsky
Short Communication
Part of the following topical collections:
  1. Seed Biology and Micropropagation


Key message

5 fluoro-typhasterol is more effective than the most potent natural brassinosteroid, brassinolide, towards stimulation of shoot production in the marubakaido apple rootstock.


Brassinosteroids (BRs) comprise a class of low-abundance plant steroids required for normal plant growth. Here we demonstrate that treatment of in vitro-grown shoots of the marubakaido apple rootstock with 2.5 µg per shoot of 5α-monofluoro homotyphasterol (5F-HTY), a synthetic derivative of the natural BR homotyphasterol (HTY), resulted in significant enhancement in the formation of primary lateral shoots. This treatment also resulted in increased length of primary lateral shoots and main shoots. This growth-stimulatory effect led to a significant increase in the multiplication rate for the rootstock. In contrast to what was found for 5F-HTY, neither HTY nor the synthetic derivative 3α-monofluoro homotyphasterol (3F-HTY) were able to significantly stimulate shoot formation. HTY and 3F-HTY were not able to stimulate primary lateral shoot elongation as well. However, both HTY and 3F-HTY were able to significantly stimulate main shoot elongation. The 5F-HTY-driven enhancement of the multiplication rate described here demonstrates the potential of this compound to improve micropropagation techniques, not only for the marubakaido apple rootstock.


Brassinolide Brassinosteroid Malus prunifolia Micropropagation Stigmasterol 



The authors thank Brazilian National Development Council (CNPq) (Grant no. 311946/2014-3) and Universidad de Buenos Aires (Grant UBACyT 20020130100826BA) for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bajguz A, Tretyn A (2003) The chemical structures and occurrence of brassinosteroids in plants. In: Hayat S, Ahmed A (eds) Brassinosteroids: bioactivity and crop productivity. Kluwer Academic Publishers, Dordrecht, pp 1–44Google Scholar
  2. Cheng X, Gou X, Yin H, Mysore KS, Li J, Wen J (2017) Functional characterisation of brassinosteroid receptor MtBRI1 in Medicago truncatula. Sci Rep 7:9327CrossRefGoogle Scholar
  3. Duran MI, González C, Acosta A, Olea AF, Díaz K, Espinoza L (2017) Synthesis of five known brassinosteroid analogs from hyodeoxycholic acid and their activities as plant-growth regulators. Int J Mol Sci. Google Scholar
  4. Ferrer-Pertuz K, Espinoza L, Mella J (2017) Insights into the structural requirements of potent brassinosteroids as vegetable growth promoters using second-internode elongation as biological activity: CoMFA and CoMSIA studies. Int J Mol Sci 18:2734–2762CrossRefGoogle Scholar
  5. Galagovsky LR, Gros EG, Ramírez JA (2001) Synthesis and bioactivity of natural and C-3 fluorinated biosynthetic precursors of 28-homobrassinolide. Phytochemistry 58:973–980CrossRefGoogle Scholar
  6. Horvath DP, Schaffer R, West M, Wisman E (2003) Arabidopsis microarrays identify conserved and differentially expressed genes involved in shoot growth and development from distantly related plant species. Plant J 34:125–134CrossRefGoogle Scholar
  7. Hothorn M, Belkhadir Y, Dreux M, Dabi T, Noel JP, Wilson IA, Chory J (2011) Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature 474:467–471CrossRefGoogle Scholar
  8. Joo SH, Jang MS, Kim MK, Lee JE, Kim SK (2015) Biosynthetic relationship between C28-brassinosteroids and C29-brassinosteroids in rice (Oryza sativa) seedlings. Phytochemistry 111:84–90CrossRefGoogle Scholar
  9. Kanwar MK, Bajguz A, Zhou J, Bhardwaj R (2017) Analysis of brassinosteroids in plants. J Plant Growth Regul 36:1002–1030CrossRefGoogle Scholar
  10. Khripach V, Zhabinskii V, de Groot A (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447CrossRefGoogle Scholar
  11. Kim G-T, Fujioka S, Kozuka T, Tax FE, Takatsuto S, Yoshida S, Tsukaya H (2005) CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. Plant J 41:710–721CrossRefGoogle Scholar
  12. Koka CV, Cerny RE, Gardner RG, Noguchi T, Fujioka S, Takatsuto S, Yoshida S, Clouse SD (2000) A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiol 122:85–98Google Scholar
  13. Lei B, Heng N, Dang X, Liu J, Yao X, Zhang C (2017) Structure based in silico identification of potentially non-steroidal brassinosteroids mimics. Mol Biosyst 13:1364–1369CrossRefGoogle Scholar
  14. Liu J, Zhang D, Sun X, Ding T, Lei B, Zhang C (2017) Structure–activity relationship of brassinosteroids and their agricultural practical usages. Steroids 124:1–17CrossRefGoogle Scholar
  15. McMorris TC, Patil PA, Chavez RG, Baker ME, Clouse SD (1994) Synthesis and biological activity of 28-homobrassinolide and analogues. Phytochemistry 36:585–589CrossRefGoogle Scholar
  16. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  17. Nunes JCO, Barpp A, Silva FC, Pedrotti EL (1999) Micropropagation of rootstocks “marubakaido” (Malus prunifolia) through meristem culture. Rev Bras Frutic 21:191–195Google Scholar
  18. Peng H, Zhao J, Neff MM (2015) ATAF2 integrates Arabidopsis brassinosteroid inactivation and seedling photomorphogenesis. Development 142:4129–4138CrossRefGoogle Scholar
  19. Penglis AAE (1981) Fluorinated carbohydrates. Adv Carbohydr Chem Biochem 38:195–285CrossRefGoogle Scholar
  20. Pereira-Netto AB, Schaefer S, Galagovsky LR, Ramirez JA (2003) Brassinosteroid-driven modulation of stem elongation and apical dominance: applications in micropropagation. In: Hayat S, Ahmad A (eds) Brassinosteroids: bioactivity and crop productivity. Kluwer Academic Publishers, Dordrecht, pp 129–157CrossRefGoogle Scholar
  21. Pereira-Netto AB, Carvalho-Oliveira MMC, Ramírez JA, Galagovsky LR (2006a) Shooting control in Eucalyptus grandis × E. urophylla hybrid: comparative effects of 28-homocastasterone and a 5α-monofluoro analog. Plant Cell Tissue Organ Cult 86:329–335CrossRefGoogle Scholar
  22. Pereira-Netto AB, Cruz-Silva CTA, Schaefer S, Ramírez JA, Galagovsky LR (2006b) Brassinosteroid-stimulated branch elongation in the marubakaido apple rootstock. Trees Struct Funct 20:286–291CrossRefGoogle Scholar
  23. Pereira-Netto AB, Roessner U, Fujioka S, Bacic A, Asami T, Yoshida S, Clouse SD (2009) Shooting control by brassinosteroids: metabolomic analysis and effect of brassinazole on Malus prunifolia, the Marubakaido apple rootstock. Tree Physiol 29:607–620CrossRefGoogle Scholar
  24. Pereira-Netto AB, Schaefer S, Galagovsky LR, Ramirez JA (2012) Brassinosteroid-driven stimulation of shoot formation and elongation: application in micropropagation. In: Pereira-Netto AB (ed) Brassinosteroids: practical applications in agriculture and human health, vol 3. Bentham Scientific Books, Sharjah, pp 26–34CrossRefGoogle Scholar
  25. Ramirez JA, Galagovsky LR (2008) Synthesis and biological activity of fluorinated brassinosteroids. In: Matsumoto T (ed) Phytochemistry research progress. Nova Science Publishers, Inc., New York, pp 163–192Google Scholar
  26. Ramirez JA, Centurión OMT, Gros EG, Galagovsky LR (2000) Synthesis and bioactivity evaluation of brassinosteroid analogs. Steroids 65:329–337CrossRefGoogle Scholar
  27. Ramírez JA, Romina M, Silvina S, Galagovsky LR (2000) Synthesis and bioactivity of teasterone and typhasterol analogs. Molecules 5:367–369CrossRefGoogle Scholar
  28. Roh H, Jeong CW, Fujioka S, Kim YK, Lee S, Ahn JH, Choi YD, Lee JS (2012) Genetic evidence for the reduction of brassinosteroid levels by a BAHD acyltransferase-like protein in Arabidopsis. Plant Physiol 159:696–709CrossRefGoogle Scholar
  29. Schaefer S, Medeiro AS, Ramirez JA, Galagovsky LR, Pereira-Netto AB (2002) Brassinosteroid-driven enhancement of the in vitro multiplication rate for the marubakaido apple rootstock [Malus prunifolia (Willd.) Borkh]. Plant Cell Rep 20:1093–1097CrossRefGoogle Scholar
  30. Sharpless KB, Amberg W, Bennani YL (1992) The osmium-catalyzed asymmetric dihydroxilation: a new ligand class and a process improvement. J Org Chem 57:2768–2771CrossRefGoogle Scholar
  31. She J, Han Z, Kim TW, Wang J, Cheng W, Chang J, Shi S, Wang J, Yang M, Wang ZY, Chai J (2011) Structural insight into brassinosteroid perception by BRI1. Nature 474:472–476CrossRefGoogle Scholar
  32. Slavikova B, Kohout L, Budesinsky M, Swaczynova J, Kasal A (2008) Brassinosteroids: synthesis and activity of some fluoro analogues. J Med Chem 51:3979–3984CrossRefGoogle Scholar
  33. Takatsuto S, Ikekawa N (1984) Synthesis and activity of plant growth-promoting steroids, (22R,23R,24S)-28-homobrassinosteroids, with modifications in rings A and B. J Chem Soc Perkin Trans 1:439–447CrossRefGoogle Scholar
  34. Todoroki Y, Hirai N, Koshimizu K (1995) Synthesis and biological activity of 1′-deoxy-1′-fluoro- and 8′-fluoroabscissic acids. Phytochemistry 40:633–641CrossRefGoogle Scholar
  35. Tong H, Xiao Y, Liu D, Gao S, Liu L, Yin Y, Jin Y, Qian Q, Chu C (2014) Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 26:4376–4393CrossRefGoogle Scholar
  36. Unterholzner SJ, Rozhon W, Papacek M, Ciomas J, Lange T, Kugler KG, Mayer KF, Sieberer T, Poppenberger B (2015) Brassinosteroids are master regulators of gibberellins biosynthesis in Arabidopsis. Plant Cell 27:2261–2272CrossRefGoogle Scholar
  37. Upreti KK, Murti GSR (2004) Effects of brassinosteroids on growth, nodulation, phytohormone content and nitrogenase activity in french bean under water stress. Biol Plant 48:407–411CrossRefGoogle Scholar
  38. Wei Z, Li J (2016) Brassinosteroids regulate root growth. Dev Symbiosis Mol Plant 9:86–100CrossRefGoogle Scholar
  39. Welch JT (1987) Advances in the preparation of biologically active organofluorine compounds. Tetrahedron 43:3123–3197CrossRefGoogle Scholar
  40. Wendeborn S, Lachia M, Jung PMJ, Leipner J, Brocklehurst D, De Mesmaeker A, Gaus K, Mondière R (2017) Biological activity of brassinosteroids—direct comparison of known and new analogs in planta. Helv Chim Acta 100(2):1–46CrossRefGoogle Scholar
  41. Yang CJ, Zhang C, Lu YN, Jin JQ, Wang XL (2011) The mechanisms of brassinosteroids action: from signal transduction to plant development. Mol Plant 4:588–600CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Botany-SCB, Centro PolitecnicoParana Federal UniversityCuritibaBrazil
  2. 2.Departamento de Química Orgánica, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina
  3. 3.CONICET, Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), Ciudad UniversitariaBuenos AiresArgentina

Personalised recommendations