pp 1–14 | Cite as

Selfing of a single monoecious Populus tremula tree produces viable males, females and “supermales”

  • Matthias FladungEmail author
  • Marek Schildbach
  • Hans Hoenicka
  • Birgit Kersten
  • Niels A. Müller
Original Article


Key message

Even though “supermale” (YY) poplar individuals are rarely found in natural populations or breeding collections, they can arise and can be as viable as regular male and female plants.


Nearly all species of the genus Populus are dioecious, i.e., form male and female flowers on separate individuals. However, bisexual poplar can occasionally be found under natural conditions or during the breeding process. According to the XX/XY model of sex determination, “supermale” (YY) individuals should only occur in the selfed progeny of a genetically male (XY) tree and not in the one of a genetically female (XX) parent. We performed detailed molecular genetic analyses of a bisexual Populus tremula XY-individual (ZP8) and its selfed progeny. The ZP8 tree was confirmed as P. tremula by chloroplast and nuclear markers, and the progeny was genotyped by microsatellite markers to verify self-pollination. In the selfed progeny but also in about 420 different poplar individuals from several breeding programmes and the wild, the X and Y chromosomes were tracked using previously reported and newly developed markers. From two self-pollination experiments of the bisexual ZP8 tree, 39 S1-individuals were obtained. Application of X- and Y-specific molecular markers revealed 15 XY, 17 YY, and 7 XX individuals. Additional investigations of about 300 different poplar clones employed in several breeding programmes as well as about 120 individuals from wild populations revealed only three trees with two Y chromosomes. Indications for inbreeding depression in the selfed progeny were obtained during germination and glasshouse cultivation, but are independent from the sex chromosome combination. Even though YY-poplar individuals are rarely found in natural populations or breeding collections, they can arise and can be as viable as regular XY- and XX-plants.


Bisexual Dioecy Inbreeding Poplar Sex chromosome TOZ19 



We thank K. Groppe, D. Ebbinghaus, M. Will, and O. Polak (all Thuenen-Institute of Forest Genetics, Grosshansdorf, Germany) for excellent technical assistance in the lab, and the Thuenen-Institute greenhouse staff (W. Graf, M. Hunger, G. Wiemann, R. Ebbinghaus, M. Spauszus) for plant cultivation. Thanks are due to Dr. B. Heinze (Federal Research Centre for Forests, Department of Forest Genetics, Vienna, Austria), Prof. A. Tsarev (All-Russian Research Institute of Forest Genetics, Voronezh, Russia), V. Schneck (Thuenen-Institute of Forest Genetics, Waldsieversdorf, Germany), M. Tubes (Bayerisches Amt für forstliche Saat- und Pflanzenzucht (ASP), Teisendorf, Germany), Dr. M. Meyer (TU Dresden, Dresden, Germany), Dr. H. Wolf (Staatsbetrieb Sachsenforst, Graupa, Germany), Dr. H. Liesebach, Dr. H. Schröder, Dr. M. Liesebach, and Dr. G. von Wühlisch (all Thuenen-Institute of Forest Genetics, Grosshansdorf, Germany), for providing plant material or DNA samples from P. tremula individuals. We also thank Prof. Dr. O. Nilsson (Umeå Plant Science Centre, Umeå, Sweden) for kindly providing the pHSP::AtFT gene construct. Funding was provided by a core grant of the Thünen Institute.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

468_2019_1817_MOESM1_ESM.docx (45 kb)
Supplementary material 1 (DOCX 44 KB)
468_2019_1817_MOESM2_ESM.docx (21 kb)
Supplementary material 2 (DOCX 21 KB)
468_2019_1817_MOESM3_ESM.xlsx (26 kb)
Supplementary material 3 (XLSX 25 KB)


  1. Bawa KS, Perry DR, Beach JH (1985) Reproductive biology of tropical lowland rain forest trees. I. sexual systems and incompatibility mechanisms. Am J Bot 72:331–345CrossRefGoogle Scholar
  2. Bräutigam K, Soolanayakanahally R, Champigny M, Mansfield S, Douglas C, Campbell MM, Cronk Q (2017) Sexual epigenetics: gender-specific methylation of a gene in the sex determining region of Populus balsamifera. Sci Rep 7:45388CrossRefPubMedCentralGoogle Scholar
  3. Charlesworth D (2016) Plant sex chromosomes. Ann Rev Plant Biol 67:397–420CrossRefGoogle Scholar
  4. Charlesworth B, Charlesworth D (1978) Model for evolution of dioecy and gynodioecy. Am Nat 112:975–997CrossRefGoogle Scholar
  5. Christe C, Stölting KN, Bresadola L, Fussi B, Heinze B, Wegmann D, Lexer C (2016) Selection against recombinant hybrids maintains reproductive isolation in hybridizing Populus species despite F1 fertility and recurrent gene flow. Mol Ecol 25:2482–2498CrossRefGoogle Scholar
  6. Coder KD (2008) Tree sex: Gender and reproductive strategies. Accessed 06 September 2018
  7. Cronk QC, Needham I, Rudall PJ (2015) Evolution of catkins: inflorescence morphology of selected Salicaceae in an evolutionary and developmental context. Front Plant Sci 6:1030CrossRefPubMedCentralGoogle Scholar
  8. Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256CrossRefGoogle Scholar
  9. Eckenwalder JE (1996) Systematics and evolution of Populus. In: Stettler RF, Bradshaw HD Jr, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC Research Press, National Research Council of Canada, Ottawa, Canada, pp 7–32Google Scholar
  10. Eimert K, Reutter G, Strolka B (2003) Fast and reliable detection of double-haploids in Asparagus officinalis by stringent RAPD-PCR. J Agric Sci 141:73–78CrossRefGoogle Scholar
  11. Fladung M, Muhs HJ, Ahuja MR (1996) Morphological changes observed in transgenic Populus carrying the rolC gene from Agrobacterium rhizogenes. Silv Genet 45:349–354Google Scholar
  12. Fladung M, Kumar S, Ahuja MR (1997) Genetic transformation of Populus genotypes with different chimeric gene constructs: transformation efficiency and molecular analysis. Transgenic Res 6:111–121CrossRefGoogle Scholar
  13. Fladung M, von Wühlisch G (2018) Improving the productivity, resistance, and adaptability in poplar–development of genetic markers for aspen ("MaRussiA"). In: Degen B, Krutovsky KV, Liesebach M (eds) German Russian Conference on Forest Genetics-Proceedings-Ahrensburg, 2017 November 21–23. Johann Heinrich von Thünen-Institut, Braunschweig, Germany, pp 9–15Google Scholar
  14. Freeman DC, Klikoff LG, Harper KT (1976) Differential resource utilization by the sexes of dioecious plants. Science 193:597–599CrossRefGoogle Scholar
  15. Freeman DC, Harper KT, Charnov EL (1980) Sex change in plants: old and new observations and new hypotheses. Oecologia 47:222–232CrossRefGoogle Scholar
  16. Fussi B (2010) Phylogeography, flowering phenology and cytonuclear interactions of Populus alba and P. tremula: two European hybridizing forest trees. PhD thesis, University of Vienna, Vienna, Austria, pp 158Google Scholar
  17. Galli L, Viégas J, Augustin E, Eckert MI, Silva JBD (1998) Meiosis of anther culture regenerants in asparagus (Asparagus officinalis L.). Genet Mol Biol 21:93–97CrossRefGoogle Scholar
  18. Gaudet M, Jorge V, Paolucci I, Beritognolo I, Scarascia Mugnozza G, Sabatti M (2008) Genetic linkage maps of Populus nigra L. including AFLPs, SSRs, SNPs, and sex trait. Tree Gen Genom 4:25–36CrossRefGoogle Scholar
  19. Geraldes A, Hefer CA, Capron A, Kolosova N, Martinez-Nunez F, Soolanayakanahally RY, Stanton B, Guy RD, Mansfield SD, Douglas CJ, Cronk QC (2015) Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus). Mol Ecol 24:3243–3256CrossRefGoogle Scholar
  20. Hoenicka H, Lehnhardt D, Polak O, Fladung M (2012) Early flowering and genetic containment studies in transgenic poplar. iForest 5:138–146CrossRefGoogle Scholar
  21. Hoenicka H, Lehnhardt D, Nilsson O, Hanelt D, Fladung M (2014) Successful crossings with early flowering transgenic poplar: interspecific crossings, but not transgenesis, promoted aberrant phenotypes in offspring. Plant Biotech J 12:1066–1074CrossRefGoogle Scholar
  22. Hoenicka H, Lehnhardt D, Briones V, Nilsson O, Fladung M (2016) Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar (Populus tremula L.). Tree Physiol 36:667–677CrossRefPubMedCentralGoogle Scholar
  23. Hsu CY, Adams JP, Kim H, No K, Ma C, Strauss SH, Drnevich J, Vandervelde L, Ellis JD, Rice BM, Wickett N (2011) FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Nat Acad Sci 108:10756–10761CrossRefGoogle Scholar
  24. Kersten B, Pakull B, Groppe K, Lueneburg J, Fladung M (2014) The sex-linked region in Populus tremuloides Turesson 141 corresponds to a pericentromeric region of about 2 million bp on Populus trichocarpa chromosome 19. Plant Biol 16:411–418CrossRefGoogle Scholar
  25. Kersten B, Pakull B, Fladung M (2017) Genomics of sex determination in dioecious trees and woody plants. Trees 31:1113–1125CrossRefGoogle Scholar
  26. Lester DT (1963) Variation in sex expression in Populus tremuloides Michx. Silv Genet 12:141–151Google Scholar
  27. Liu H, Cui S, Hou C, Xu J, Hong-Xi C (2007) YY supermale generated gynogenetically from XY female in Pelteobagrus fulvidraco (Richardson). Acta Hydrobiol Sin 31:725Google Scholar
  28. Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb Proc Int Plant Prop Soc 30:421–427Google Scholar
  29. McKown AD, Klápště J, Guy RD, Soolanayakanahally RY, Mantia J, Porth I, Skyba O, Unda F, Douglas CJ, El-Kassaby YA, Hamelin RC (2017) Sexual homomorphism in dioecious trees: extensive tests fail to detect sexual dimorphism in Populus. Sci Rep 7:1831CrossRefPubMedCentralGoogle Scholar
  30. Meirmans PG, Lamothe M, Perinet P, Isabel N (2007) Species-specific single nucleotide polymorphism markers for detecting hybridization and introgression in poplar. Botany 85:1082–1091Google Scholar
  31. Mosseler A, Zsuffa L (1989) Sex expression and sex ratios in intra-and interspecific hybrid families. Silv Genet 38:12–17Google Scholar
  32. Novotná K, Štochlová P (2013) Aspects of sexual reproduction in rare monoecious Populus nigra var. nigra trees. Silv Genet 62:117–123CrossRefGoogle Scholar
  33. Pakull B (2010) Genetische Kartierung und Untersuchungen zur Geschlechtsdeterminierung in Espen (P. tremula L./P. tremuloides Michx.). PhD thesis, University of Hamburg, HamburgGoogle Scholar
  34. Pakull B, Groppe K, Meyer M, Markussen T, Fladung M (2009) Genetic linkage mapping in aspen (Populus tremula L. and P. tremuloides Michx.). Tree Gen Genom 5:505–515CrossRefGoogle Scholar
  35. Pakull B, Groppe K, Mecucci F, Gaudet M, Sabatti M, Fladung M (2011) Genetic mapping of linkage group XIX and identification of sex-linked SSR markers in a Populus tremula L. × P. tremuloides Michx. cross. Can J For Res 41:245–253CrossRefGoogle Scholar
  36. Pakull B, Kersten B, Lueneburg J, Fladung M (2015) A simple PCR-based marker to determine sex in aspen. Plant Biol 17:256–261CrossRefGoogle Scholar
  37. Paolucci I, Gaudet M, Jorge V, Beritognolo I, Terzoli S, Kuzminsky E, Muleo R, Scarascia Mugnozza G, Sabatti M (2010) Genetic linkage maps of Populus alba L. and comparative mapping analysis of sex determination across Populus species. Tree Gen Genom 6:863–875CrossRefGoogle Scholar
  38. Petzold A, Pfeiffer T, Jansen F, Eusemann P, Schnittler M (2013) Sex ratios and clonal growth in dioecious Populus euphratica Oliv. Xinjiang Prov., Western China. Trees 27:729–744CrossRefGoogle Scholar
  39. Renner SS (2014) The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot 101:1588–1596CrossRefGoogle Scholar
  40. Renner SS (2016) Pathways for making unisexual flowers and unisexual plants: moving beyond the “two mutations linked on one chromosome” model. Am J Bot 103:587–589CrossRefGoogle Scholar
  41. Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606CrossRefGoogle Scholar
  42. Rottenberg A (2000) Fertility of exceptional bisexual individuals in four dioecious plant species. Sex Plant Reprod 12:219–221CrossRefGoogle Scholar
  43. Rowland DL, Garner R, Jespersen M (2002) A rare occurrence of seed formation on male branches of the dioecious tree, Populus deltoides. Amer Midland Nat 147:185–187CrossRefGoogle Scholar
  44. Runquist EW (1951) Ett fall av androgyna hängen hos Populus tremula L. Bot Not (Lund) 1951:188–191Google Scholar
  45. Schlenker G (1953) Beobachtungen über die Geschlechtsverhältnisse bei jungen Graupappeln und Aspen. Zeitschr Forstgenetik 2:102–104Google Scholar
  46. Schroeder H, Fladung M (2014) Differentiation of Populus species by chloroplast SNP markers for barcoding and breeding approaches. iForest 8:544–546CrossRefGoogle Scholar
  47. Schroeder H, Hoeltken AM, Fladung M (2012) Differentiation of Populus species using chloroplast single nucleotide polymorphism (SNP) markers—essential for comprehensible and reliable poplar breeding. Plant Biol 14:374–381CrossRefGoogle Scholar
  48. Schroeder H, Kersten B, Fladung M (2017) Development of multiplexed marker sets to identify the most relevant poplar species for breeding. Forests 8:492CrossRefGoogle Scholar
  49. Scott AG, Penman DJ, Beardmore JA, Skibinski DOF (1989) The ‘YY’supermale in Oreochromis niloticus (L.) and its potential in aquaculture. Aquacult 78:237–251CrossRefGoogle Scholar
  50. Seitz FW (1952) Zwei neue Funde von Zwitterigkeit bei der Aspe. Zeitschr Forstgenetik 1:70–73Google Scholar
  51. Seitz FW (1953) Über anomale Zwitterblüten eines Klons der Gattung Populus, Sektion Leuce. Zeitschr Forstgenetik 2:77–90Google Scholar
  52. Seitz FW (1954) Über das Auftreten von Triploiden nach der Selbstung anomaler Zwitterblüten einer Graupappelform. Zeitschr Forstgenetik 3:1–16Google Scholar
  53. Slavov GT, Zhelev P (2010) Salient biological features, systematics, and genetic variation of Populus. In: Jansson S, Bhalerao R, Groover A (eds) Genetics and Genomics of Populus. Plant genetics and genomics: crops and models. Springer, New York, pp 15–38CrossRefGoogle Scholar
  54. Sneep J (1953) The significance of andromonoecy for the breeding of Asparagus officinalis L. Euphytica 2:89–95CrossRefGoogle Scholar
  55. Stettler RF (1971) Variation in sex expression of black cottonwood and related hybrids. Silv Genet 20:42–46Google Scholar
  56. Sundell D, Mannapperuma C, Netotea S, Delhomme N, Lin YC, Sjodin A, Van de Peer Y, Jansson S, Hvidsten TR, Street NR (2015) The plant genome integrative explorer resource: plantgenie.Org. New Phytol 208:1149–1156CrossRefGoogle Scholar
  57. The Tree of Sex Consortium (2014) Tree of sex: a database of sexual systems. Sci Data 1:140015Google Scholar
  58. Tuskan GA, Gunter LE, Yang ZK, Yin T, Sewell MM, DiFazio SP (2004) Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa. Can J For Res 34:85–93CrossRefGoogle Scholar
  59. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa Science 313:1596–1604CrossRefGoogle Scholar
  60. Tuskan GA, DiFazio S, Faivre-Rampant P, Gaudet M, Harfouche A, Jorge V, Labbé JL, Ranjan P, Sabatti M, Slavov G, Street N (2012) The obscure events contributing to the evolution of an incipient sex chromosome in Populus: a retrospective working hypothesis. Tree Gen Genom 8:559–571CrossRefGoogle Scholar
  61. Vagera J, Paulikova D, Doležel J (1994) The development of male and female regenerants by in vitro androgenesis in dioecious plant Melandrium album. Ann Bot 73:455–459CrossRefGoogle Scholar
  62. Van Loo M, Joseph JA, Heinze B, Fay MF, Lexer C (2008) Clonality and spatial genetic structure in Populus × canescens and its sympatric backcross parent P. alba in a Central European hybrid zone. New Phytol 177:506–516Google Scholar
  63. Van den Broeck AV, Villar M, Van Bockstaele E, VanSlycken J (2005) Natural hybridization between cultivated poplars and their wild relatives: evidence and consequences for native poplar populations. Ann For Sci 62:601–613CrossRefGoogle Scholar
  64. Varadaraj K, Pandian TJ (1989) First report on production of supermale tilipa by integrating endocrine sex reversal with gynogenetic technique. Curr Sci 58:434–441Google Scholar
  65. Westergaard M (1958) The mechanism of sex determination in dioecious flowering plants. Adv Genet 9:217–281CrossRefGoogle Scholar
  66. Yampolsky C, Yampolsky H (1922) Distribution of the sex forms in the phanerogamic flora. In: Bibliography of genetics, vol 3, pp 1–62Google Scholar
  67. Yin T, Difazio SP, Gunter LE, Zhang X, Sewell MM, Woolbright SA, Allan GJ, Kelleher CT, Douglas CJ, Wang M, Tuskan GA (2008) Genome structure and emerging evidence of an incipient sex chromosome in Populus. Genom Res 18:422–430CrossRefGoogle Scholar
  68. Yin TM, Zhang XY, Gunter LE, Li SX, Wullschleger SD, Huang MR, Tuskan GA (2009) Microsatellite primer resource for Populus developed from the mapped sequence scaffolds of the Nisqually-1 genome. New Phytol 181:498–503CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Thünen-Institute of Forest Genetics (TI-FG)GrosshansdorfGermany
  2. 2.Staatsbetrieb Sachsenforst (SBS)PirnaGermany

Personalised recommendations