pp 1–9 | Cite as

Seed desiccation tolerance/sensitivity of tree species from Brazilian biodiversity hotspots: considerations for conservation

  • Rafaella C. Mayrinck
  • Larissa C. Vilela
  • Thalita M. Pereira
  • Ailton G. Rodrigues-Junior
  • Antonio C. Davide
  • Tatiana A. A. VazEmail author
Original Article
Part of the following topical collections:
  1. Drought Stress
  2. Drought Stress
  3. Drought Stress


Key message

Seed banking is an essential tool for species conservation. However, two world’s biodiversity hotspots in a megadiverse tropical country have high percentage of short-lived seeds, requiring new strategies for preservation.


Information on seed storage behaviour is crucial for conservation, especially on highly impacted biomes. Thus, this study aimed to investigate seed desiccation tolerance/sensitivity in native tree species of two world’s biodiversity hotspots, Atlantic Forest and Cerrado. We assessed seed storage behaviour for 11 species. The tests were conducted immediately after seed collection at 12% and 8–5% of water content followed by 3 months of storage at − 18 °C. In addition, we retrieved data on the literature about water content after dispersal and storage behaviour of seeds for several tree species native from these hotspots. It comprised 79 species from 30 families. From this total, 47.4% of species produced orthodox seeds, 19.2% intermediate, and 33.3% recalcitrant seeds. All species from Lauraceae produced recalcitrant seeds. Most of studied species produce long-lived orthodox seeds; however, a high percentage of species produce sensitive seeds. Species producing short-lived seeds require non-conventional storage methods. Information on seed storage behaviour is fundamental for species management, especially in tropical areas, where the number of recalcitrant species is high. Thus, seed banking and other conservation strategies must be improved to avoid species loss. Technologies to improve storage of recalcitrant seeds are discussed.


Biodiversity hotspots Desiccation tolerance Conservation Orthodox seeds Recalcitrant seeds Restoration 



The authors would like to thank José Pedro for seed collection. LCV, RCM, and TMP thank PIBIC-FAPEMIG (Programa Institucional de Bolsas de Iniciação Científica da Fundação de Amparo à Pesquisa de Minas Gerais) for their scholarship. TAAV thanks CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and FAPEMIG (Fundação de Amparo à Pesquisa de Minas Gerais) for the scholarship. ACD thanks the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the research productivity granted.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

468_2019_1815_MOESM1_ESM.docx (27 kb)
Supplementary material 1 (DOCX 26 KB)


  1. Beech E, Rivers M, Oldfield S, Smith PP (2017) GlobalTreeSearch: the first complete global database of tree species and country distributions. J Sustain For 36:454–489CrossRefGoogle Scholar
  2. Berjak P, Pammenter NW (2008) From Avicennia to Zizania: seed recalcitrance in perspective. Ann Bot 101(2):213–228CrossRefGoogle Scholar
  3. Berjak P, Pammenter NW (2013) Implications of the lack of desiccation tolerance in recalcitrant seeds. Front Plant Sci 4:1–9CrossRefGoogle Scholar
  4. Bonner FT (1990) Storage of seeds: potential and limitations for germplasm conservation. For Ecol Manag 35:35–43CrossRefGoogle Scholar
  5. BRASIL (1992) Normais Climatológicas do Brasil, período 1961–1990. Ministério da Agricultura e da Reforma Agrária, BrasíliaGoogle Scholar
  6. Carvalho LR, Da Silva EAA, Davide AC (2006) Classificação de sementes florestais quanto ao comportamento no armazenamento. Rev Bras Sem 28:15–25CrossRefGoogle Scholar
  7. Carvalho LR, Davide AC, Da Silva EAA, Carvalho MLM (2008) Classificação de sementes de espécies florestais dos gêneros Nectandra e Ocotea (Lauraceae) quanto ao comportamento no armazenamento. R Bras Sem 30:1–9CrossRefGoogle Scholar
  8. Colombo AF, Joly CA (2010) Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz J Biol 70:697–708CrossRefGoogle Scholar
  9. Cromarty AS, Ellis RH, Roberts EW (1982) The design of seed storage facilities for genetic conservation. International Board for Plant Genetic Resources, RomeGoogle Scholar
  10. Davide AC, Faria JMR, Botelho SA (1995) Propagação de espécies florestais. CEMIG/UFLA/FAEPE, Belo HorizonteGoogle Scholar
  11. Davide AC, Carvalho LR, Carvalho MLM, Guimarães RM (2003) Classificação fisiológica de sementes de espécies florestais pertencentes à família Lauraceae quanto à capacidade de armazenamento. Cerne 9:29–35Google Scholar
  12. Daws MI, Garwood NC, Pritchard HW (2006) Prediction of desiccation sensitivity in seeds of woody species: a probabilistic model based on two seed traits and 104 species. Ann Bot 97:667–674CrossRefPubMedCentralGoogle Scholar
  13. de Lima M Jr, Hong TD, Arruda YMBC, Mendes AMS, Ellis RH (2014) Classification of seed storage behaviour of 67 Amazonian tree species. Seed Sci Technol 43:63–92Google Scholar
  14. Dickie JB, Pritchard HW (2002) Systematic and evolutionary aspects of desiccation tolerance in seeds. In: Black M, Pritchard HW (eds) Desiccation and survival in plants. Drying without dying. CABI Publishing, Wallingford, pp 239–259CrossRefGoogle Scholar
  15. Ellis RH (1991) The longevity of seeds. HortScience 26:1119–1125Google Scholar
  16. Farnsworth E (2000) The ecology and physiology of viviparous and recalcitrant seeds. Annu Rev Ecol Syst 31:107–138CrossRefGoogle Scholar
  17. Hong TD, Ellis RH (1996) A protocol to determine seed storage behaviour. Technical Bulletin 1, International Plant Genetic Resources Institute, RomeGoogle Scholar
  18. Hong TD, Ellis RH (1998) Contrasting seed storage behavior among different species of Meliaceae. Seed Sci Technol 26:77–95Google Scholar
  19. International Seed Testing Association (2004) International rules for seed testing. ISTA, OftringenGoogle Scholar
  20. José AC, Da Silva EAA, Davide AC (2007) Classificação fisiológica de sementes de cinco espécies arbóreas de mata ciliar quanto a tolerância à dessecação e ao armazenamento. Rev Bras Sem 29:171–178CrossRefGoogle Scholar
  21. Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713CrossRefGoogle Scholar
  22. Köppen W (1936) Das geographische system der climate. In: Köppen W, Geiger R (eds) Handbuch der klimatologie. GebruderBorntraeger, Berlin, pp 1–44Google Scholar
  23. Linington SH (2003) The design of seed banks. In: Smith RD, Dickie JB, Linington SH, Pritchard HW, Probert RJ (eds) Seed conservation: turning science into practice. Royal Botanic Gardens, Kew, pp 591–636Google Scholar
  24. Marques ER, Vaz TAA, Rodrigues-Junior AG, Davide AC, José AC (2017) In situ germination of two tropical recalcitrant seeds and changes in activity of ROS-scavenging enzymes. Trees 31:1785–1792CrossRefGoogle Scholar
  25. Mayrinck RC, Vaz TAA, Davide AC (2016) Physiological classification of forest seeds regarding the desiccation tolerance and storage behaviour. Cerne 22:85–92CrossRefGoogle Scholar
  26. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  27. Nery MC, Davide AC, Da Silva EAA, Soares GCM, Nery FC (2014) Classificação fisiológica de sementes florestais quanto a tolerância à dessecação e ao armazenamento. Cerne 20:477–483CrossRefGoogle Scholar
  28. Oldfield S (2009) Botanic gardens and the conservation of tree species. Trends Plant Sci 14:581–583CrossRefGoogle Scholar
  29. Pelissari F, José AC, Fontes MA, Matos AC, Pereira WV, Faria JM (2018) A probabilistic model for tropical tree seed desiccation tolerance and storage classification. New For 49:143–158CrossRefGoogle Scholar
  30. Pritchard HW, Daws MI, Fletcher BJ, Gaméné CS, Msanga HP, Omondi W (2004) Ecological correlates of seed desiccation tolerance in tropical African dryland trees. Am J Bot 91:863–870CrossRefGoogle Scholar
  31. Pritchard HG, Moat JF, Ferraz JBS, Marks TR, Camargo JLC, Nadarajan J, Ferraz IDK (2014) Innovative approaches to the preservation of forest trees. For Ecol Manag 333:88–98CrossRefGoogle Scholar
  32. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Accessed July 2016
  33. Ratter JA, Ribeiro JF, Bridgewater S (1997) The Brazilian Cerrado vegetation and threats to its biodiversity. Ann Bot 80:223–230CrossRefGoogle Scholar
  34. Ribeiro GVT, Teixido AL, Barbosa NPU, Silveira FAO (2016) Assessing bias and knowledge gaps on seed ecology research: implications for conservation agenda and policy. Ecol Appl 26:2033–2043CrossRefGoogle Scholar
  35. Roberts EH (1973) Predicting the storage life of seeds. Seed Sci Technol 1:499–514Google Scholar
  36. Ruane J, Sonnino A (2006) The rule of Biotechnology and in exploring and protecting agricultural genetic resources. Food and agriculture organization of the United Nations, RomeGoogle Scholar
  37. Sherwood S, Fu Q (2014) A drier future? Science 343:737–739CrossRefGoogle Scholar
  38. Siqueira MF, Peterson AT (2003) Consequences of global climate change for geographic distributions of Cerrado tree species. Biota Neotrop 3:BN00803022003CrossRefGoogle Scholar
  39. Tabarelli M, Pinto LP, Silva JMC, Hirota MM, Bedê LC (2005) Desafios e oportunidades para a conservação da biodiversidade na Mata Atlântica brasileira. Megadiversidade 1:132–138Google Scholar
  40. Teixido AL, Toorop PE, Liu U, Ribeiro GVT, Fuzessy LF, Guerra TJ, Silveira FAO (2017) Gaps in seed banking are comprimising the GSPC’s Target 8 in a megadiverse country. Biodivers Conserv 26:703–716CrossRefGoogle Scholar
  41. Thompson PA (1974) The use of seed-banks for conservation of populations of species and ecotypes. Biol Conserv 6:15–19CrossRefGoogle Scholar
  42. Tweddle JC, Dickie JB, Baskin CC, Baskin JM (2003) Ecological aspects of seed desiccation sensitivity. J Ecol 91:294–304CrossRefGoogle Scholar
  43. Van Den Berg E, Oliveira-Filho AT (2000) Composição florística e estrutura fitossociológica de uma floresta ripária em Itutinga, MG, e comparação com outras áreas. Rev Bras Bot 23:231–253Google Scholar
  44. Vaz TAA, Davide AC, Rodrigues-Junior AG, Nakamura AT, Tonetti OAO, da Silva EAA (2016) Swartzia langsdorffii Raddi: morphophysiological traits of a recalcitrante seed dispersed during the dry season. Seed Sci Res 26:47–56CrossRefGoogle Scholar
  45. Vaz TAA, Rodrigues-Junior AG, Davide AC, Nakamura AT, Toorop PE (2018) A role for fruit structure in seed survival and germination of Swartzia langsdorffii Raddi beyond dispersal. Plant Biol 20:263–270CrossRefGoogle Scholar
  46. Von Teichman I, van Wyk AE (1994) Structural aspects and trends in the evolution of recalcitrant seeds in dicotyledons. Seed Sci Res 4:225–239Google Scholar
  47. Walters C (2015) Orthodoxy, recalcitrance and in-between: describing variation in seed storage characteristics using threshold responses to water loss. Planta. 242(2):397–406. CrossRefGoogle Scholar
  48. Walters C, Berjak P, Pammenter N, Kennedy K, Raven P (2013) Preservation of recalcitrant seeds. Science 339:915–916CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratório de Sementes Florestais, Departamento de Ciências FlorestaisUniversidade Federal de LavrasLavrasBrazil
  2. 2.Instituto de BiologiaUniversidade Federal de UberlândiaUberlândiaBrazil
  3. 3.Departamento de Ciências e LinguagensInstituto Federal de Educação, Ciência e Tecnologia de Minas GeraisBambuíBrazil

Personalised recommendations