pp 1–12 | Cite as

Ecophysiological performance of four species of Clusiaceae with different modes of photosynthesis in a mosaic of riverine, rupestrian grasslands, and cerrado vegetation in SE-Brazil

  • Eduardo A. de Mattos
  • Fabio R. Scarano
  • Pedro O. Cavalin
  • G. Wilson Fernandes
  • Heinz Rennenberg
  • Ulrich LüttgeEmail author
Original Article
Part of the following topical collections:
  1. Drought Stress


Key message

Among four species of Clusiaceae (sensu lato) occurring in a mosaic of different types of tropical vegetation, Kielmeyera coriacea Mart. & Zucc. and Calophyllum brasiliense Camb. were C3-species with similar performance at micro-sites of contrasting water supply, Clusia criuva Cambess—although potentially a C3/CAM intermediate species—performed C3-photosynthesis, while Clusia arrudea Planchon & Triana ex Engl. performed C3-photosynthesis or CAM-cycling depending on site characteristics and dry or wet season. Depending on individual species, C3-photosynthesis proves to be a suitable option at a variety of environmental conditions, while CAM-cycling appears to be an escape under more severe stress.


In this ecophysiological field work, we investigated possible microhabitat-dependent expression of modes of photosynthesis among species of Clusiaceae (sensu lato) in a mosaic of tropical vegetation. The study site was in the Serra de São José (21°08’S, 44°17′W; in the municipality of Tiradentes, state of Minas Gerais, SE-Brazil). The mosaic of tropical vegetation types was made up of rupestrian grasslands, cerrado, small rock outcrops, and riverine and gallery forest alongside a small river. Four species were measured, namely C. criuva Camb., C. arrudea Planchon & Triana ex Engl., K. coriacea Mart. & Zucc., and C. brasiliense Camb. K. coriacea and C. brasiliense performed C3-photosynthesis with midday depressions and reversible acute photoinhibition in response to varying environmental conditions related to habitat types and wet and dry seasons, respectively. The C3/CAM intermediate C. criuva also performed C3-photosynthesis with midday depression and acute photoinhibition. It appeared not to be stressed enough to switch to its intrinsic CAM option. In contrast, while C. arrudea under favourable conditions in the gallery forest and the wet season also performed C3-photosynthesis, under drier conditions, it used CAM-cycling. For particular species, realization of CAM-options is a possibility of acclimation. Other species contemporarily may rely on different alternatives such as plastic performance of C3-photoynthesis. At the microsite level, overlapping functional diversity of species and diversity of habitats contributes to the complexity of this vegetation type.


Clusiaceae Crassulacean acid metabolism (CAM) CAM-cycling C3-photosynthesis Mosaic of tropical vegetation Plant adaptations 



We thank Volkswagen Stiftung, Germany, for funding. Great thanks are due to Augusto C. Franco for critical reading the manuscript and valuable suggestions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Araujo DSD, Scarano FR (2007) Biogeographic features of Clusia, with emphasis on South American and especially Brazilian species. In: Lüttge U (ed) Clusia, a woody neotropical genus of remarkable plasticity and diversity. Springer, Heidelberg, pp 31–54Google Scholar
  2. Bilger W, Schreiber U, Bock M (1995) Determination of quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 102:425–432CrossRefGoogle Scholar
  3. Bittrich V, Amaral MCE (1996) Floral morphology and pollination biology of some Clusia species from the Gran Sabana (Venezuela). Kew Bull 51:681–694CrossRefGoogle Scholar
  4. Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504CrossRefGoogle Scholar
  5. Cardoso D, Särkinen T, Alexander S, Amorim AM, Bittrich V et al (2017) Amazon plant diversity revealed by a taxonomical verified species list. Proc Nat Acad Sci USA 114:10695–10700CrossRefGoogle Scholar
  6. Demmig-Adams B, Adams WW, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98:253–264CrossRefGoogle Scholar
  7. Diaz M, Haag-Kerwer A, Wingfield R, Ball E, Olivares E, Grams TEE, Ziegler H, Lüttge U (1996) Relationships between carbon and hydrogen isotope ratios and nitrogen levels in leaves of Clusia species and two other Clusiaceae genera at various sites and different altitudes in Venezuela. Trees 10:351–358Google Scholar
  8. Duarte HM, Geßler A, Scarano FR, Franco AC, De Mattos EA, Nahm M, Rennenberg H, Rodrigues PJFP, Zaluar HLT, Lüttge (2005) Ecophysiology of six selected shrub species in different plant communities at the periphery of the Atlantic forest of SE-Brazil. Flora 200:456–476CrossRefGoogle Scholar
  9. Falster DS, Westoby M (2003) Leaf size and angle vary widely across species: what consequences for light interception? New Phytol 158:509–525CrossRefGoogle Scholar
  10. Fernandes GW (ed) (2016) Ecology and conservation of mountaintop grasslands in Brazil, Springer International Publishing, Switzerland. ISBN 978-3-319-29808-5CrossRefGoogle Scholar
  11. Franco AC (1998) Seasonal patterns of gas exchange, water relations and growth of Roupala montana, an evergreen savanna species. Plant Ecol 136:69–76CrossRefGoogle Scholar
  12. Franco AC, Lüttge U (2002) Midday depression in savanna trees: coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency. Oecologia 131:356–365CrossRefGoogle Scholar
  13. Franco AC, Matsubara S, Orthen B (2007) Photoinhibition, carotenoid composition and the co-regulation of photochemical and non-photochemical quenching in neotropical savanna trees. Tree Physiol 27:717–725CrossRefGoogle Scholar
  14. Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92CrossRefGoogle Scholar
  15. Geßler A, Duarte HM, Franco AC, Lüttge U, de Mattos EA, Nahm M, Scarano FR, Zaluar HLT, Rennenberg H (2005) Ecophysiology of selected tree species in different plant communities at the periphery of the Atlantic forest of SE-Brazil II. Spacial and ontogenetic dynamics in Andira legalis, a deciduous legume tree. Trees 19:510–522CrossRefGoogle Scholar
  16. Grams TEE, Herzog B, Lüttge U (1998) Are there species in the genus Clusia with obligate C3-photosynthesis? J Plant Physiol 152:1–9CrossRefGoogle Scholar
  17. Gustafsson MHG, Winter K, Bittrich V (2007) Diversity, phylogeny and classification of Clusia. In: Lüttge U (ed) Clusia, a woody neotropical genus of remarkable plasticity and diversity. Ecological studies, vol 94. Springer, Berlin, pp 95–116Google Scholar
  18. Herzog B, Grams TEE, Haag-Kerwer A, Ball E, Franco AC, Lüttge U (1999) Expression of modes of photosynthesis (C3, CAM) in Clusia criuva Camb. in a cerrado/gallery forest transect. Plant Biol 1:357–364CrossRefGoogle Scholar
  19. Kluge M, Ting IP (1978) Crassulacean acid metabolism: analysis of an ecological adaptation. Ecological studies, vol 30. Springer, BerlinCrossRefGoogle Scholar
  20. Kolbek J, Alves RJV (2008) Impacts of cattle, fire and wind in rocky savannas, Southeastern Brazil. Acta Universitatis Environmentalica 22:111–130Google Scholar
  21. Lüttge U (1999) One morphotype, three physiotypes: sympatric species of Clusia with obligate C3 photosynthesis, obligate CAM and C3-CAM intermediate behaviour. Plant Biol 1:138–148CrossRefGoogle Scholar
  22. Lüttge U (2000) Photosynthese-Physiotypen unter gleichen Morphotypen, Species und bei Klonen: kann ökophysiologische Plastizität zur Entstehung von Diversität beitragen? Ber Reinh Tüxen Ges 12:319–334Google Scholar
  23. Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652CrossRefGoogle Scholar
  24. Lüttge U (2005) Genotypes–phenotypes–ecotypes: relations to crassulacean acid metabolism. Nova Acta Leopoldina NF 92(342):177–193Google Scholar
  25. Lüttge U (ed) (2007a) Clusia, a woody neotropical genus of remarkable plasticity and diversity. Springer, HeidelbergGoogle Scholar
  26. Lüttge U (2007b) Photosynthesis. In: Lüttge U (ed) Clusia, a woody neotropical genus of remarkable plasticity and diversity. Springer, Heidelberg, pp 135–186Google Scholar
  27. Lüttge U (2007c) Physiological ecology. In: Lüttge U (ed) Clusia, a woody neotropical genus of remarkable plasticity and diversity. Springer, Heidelberg, pp 187–234Google Scholar
  28. Lüttge U (2008) Physiological ecology of tropical plants, 2nd edn. Springer, HeidelbergGoogle Scholar
  29. Lüttge U (2018) Functional diversity of photosynthesis, plant species diversity and habitat diversity. Progr Bot 81 (in press)Google Scholar
  30. Lüttge U, Duarte HM (2007) Morphology, anatomy, life-forms and hydraulic architecture. In: Lüttge U (ed) Clusia, a woody neotropical genus of remarkable plasticity and diversity. Springer, Heidelberg, pp 17–30Google Scholar
  31. Lüttge U, Duarte HM, Scarano FR, de Mattos EA, Cavalin PO, Franco AC, Fernandes GW (2007) Physiological ecology of photosynthesis of five sympatric species of Velloziaceae in the rupestrian fields of Serra do Cipó, Minas Gerais, Brazil. Flora 202:637–646CrossRefGoogle Scholar
  32. Lüttge U, Scarano FR, de Mattos EA, Franco AC, Broetto F, Dias ATC, Duarte HM, Uehlein N, Wendt T (2015) Does ecophysiological behaviour explain habitat occupation of sympatric Clusia species in a Brazilian Atlantic rainforest? Trees 29:1973–1988CrossRefGoogle Scholar
  33. Martin CE (1996) Putative causes and consequences of recycling CO2 via crassulacean acid metabolism. In: Winter K, Smith JAC (eds) Crassulacean acid metabolism: biochemistry, ecophysiology and evolution. Springer, Heidelberg, pp 192–203CrossRefGoogle Scholar
  34. Mattos EA de (1998) Perspectives in comparative ecophysiology of some Brazilian vegetation types: leaf CO2 and H2O gas exchange, chlorophyll a fluorescence and carbon isotope discrimination. In: Scarano FR, Franco AC (eds) Ecophysiological strategies of xerophytic and amphibious plants in the neotropics. Oecologia Brasiliensis, vol IV. Universidade Federal do Rio de Janeiro, Rio de Janeiro, pp 1–22Google Scholar
  35. Mattos EA de, Lobo PC, Joly CA (2002) Overnight rainfall inducing rapid changes in photosynthetic behaviour in a cerrado woody species during a dry spell amidst the rainy season. Aust J Bot 50:241–246CrossRefGoogle Scholar
  36. Medrano H, Escalona JM, Bota J, Gulías J, Flexas J (2002) Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot 89:895–905CrossRefGoogle Scholar
  37. Moraes JAPV, Prado CHBA (1998) Photosynthesis and water relations in cerrado vegetation. In: Scarano FR, Franco AC (eds) Ecophysiological strategies of xerophytic and amphibious plants in the neotropics. Oecologia Brasiliensis, vol IV. Universidade Federal do Rio de Janeiro, Rio de Janeiro, pp 45–46Google Scholar
  38. Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Phys 29:379–414CrossRefGoogle Scholar
  39. Pipoly JJ, Kearns DM, Berry PE (1998) Clusia L. In: Berry PE, Holst BK, Steyermark JA, Yatkievych K (eds) Flora of the Venezuelan Guayana; vol 4. Caesalpiniaceae–Ericaceae. Missouri Botanical Garden Press, St. Louis, pp 248–295Google Scholar
  40. Rascher U, Liebig M, Lüttge U (2000) Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ 23:1397–1405CrossRefGoogle Scholar
  41. Scarano FR, Mattos EA de, Franco AC, Cavalin PO, Orthen B, Fernandes GW, Lüttge U (2015) Features of CAM-cycling expressed in the dry season by terrestrial and epiphytic plants of Clusia arrudae Planchon & Triana in two rupestrial savannas of southeastern Brazil in comparison to the C3-species Eremanthus glomerulatus Less. Trees 30:913–922CrossRefGoogle Scholar
  42. Sipes DL, Ting IP (1985) Crassulacean acid metabolism and crassulacean acid metabolism modifications in Peperomia camptotricha. Plant Physiol 77:59–63CrossRefGoogle Scholar
  43. Tenhunen JD, Lange OL, Braun M (1981) Midday stomatal closure in Mediterranean type sclerophylls under simultaed habitat conditions in an environmental chamber II. Effect of the complex of leaf temperature and air humidity on gas exchange of Arbutus unedo and Quercus ilex. Oecologia 50:5–11CrossRefGoogle Scholar
  44. Thiele A, Krause GH, Winter K (1998) In situ study of photoinhibition of photosynthesis and xanthophyll cycle activity in plants growing in natural gaps of the tropical forest. Aust J Plant Physiol 25:189–195Google Scholar
  45. Ting IP (1985) Crassulacean acid metabolism. Ann Rev Plant Physiol 36:595–622CrossRefGoogle Scholar
  46. Ziegler H (1994) Stable isotopes in plant physiology and ecology. Progr Bot 56:1–24Google Scholar
  47. Zotz G, Reichling P, Krack S (1999) Another woody hemiepiphyte with CAM: Havetiopsis flexilis Spruce ex Planch. et Tr. (Clusiaceae). Flora 194:215–220CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Eduardo A. de Mattos
    • 1
  • Fabio R. Scarano
    • 1
    • 2
  • Pedro O. Cavalin
    • 1
  • G. Wilson Fernandes
    • 3
  • Heinz Rennenberg
    • 4
  • Ulrich Lüttge
    • 5
    Email author
  1. 1.Departamento de EcologiaUniversidade Federal do Rio de Janeiro (UFRJ), CCS, IBRio de JaneiroBrazil
  2. 2.Fundação Brasileira para o Desenvolvimento SustentávelRio de JaneiroBrazil
  3. 3.Lab. Ecologia Evolutiva e Biodiversidade/IBC, Universidade Federal de Minas GeraisBelo HorizonteBrazil
  4. 4.Institut für Forstwissenschaften und Baumphysiologie, Professur für Baumphysiologie, Freiburg UniversityFreiburgGermany
  5. 5.Department of BiologyDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations