Advertisement

Trees

, Volume 33, Issue 1, pp 23–35 | Cite as

The influence of climate on the masting behavior of Mexican beech: growth rings and xylem anatomy

  • Ernesto Chanes Rodríguez-Ramírez
  • Teresa Terrazas
  • Isolda Luna-VegaEmail author
Original Article
Part of the following topical collections:
  1. Tree Rings

Abstract

Key message

The Mexican beech undergoes masting events, on average, every 5.5 years. These events depend directly on precipitation.

Abstract

Climate change has considerably impacted the protective functions of tropical montane cloud forests, possibly influencing the synchronicity of phenological processes and the distribution and physiology of plants. In particular, climatic fluctuations cause changes in the distribution of tree species. Mexican beech (Fagus grandifolia subsp. mexicana) is considered an endangered species, due to its restricted distribution and its being a Miocene relict, limited to tropical montane cloud forests in the mountains of the Sierra Madre Oriental in eastern Mexico. We analyzed the influence of temperature and precipitation in prompting changes to tree-ring width, as well as vessel frequency and diameter, of Mexican beech in eastern Mexico. We used growth rings and xylem vessels traits to infer the historical masting events of Mexican beech over the last 128 years. We obtained independent chronologies for Mexican beech in each of the studied sites, dating back 152–178 years. Precipitation was strongly associated with differences in tree-ring width between masting and non-masting years. Our study highlights the use of dendroecological research to detect climate-induced modifications in the vessel frequency and diameter of tree species inhabiting tropical montane cloud forests. This association also explained differences in vessel frequency and diameter recorded before, during, and after masting events. Our results revealed that Mexican beech undergoes masting events every 5.5 years on average, and that these events directly depend on minimum annual precipitation. In conclusion, our results advance our understanding on the plasticity of growth rings and vessels traits (frequency and diameter) in response to fluctuation in precipitation.

Keywords

Climate variables Dendromastecology Fagus grandifolia subsp. mexicana Tropical montane cloud forest Xylem vessels Masting 

Notes

Acknowledgements

We wish to thank Osvaldo Franco-Ramos and Lorenzo Vázquez-Selem for their help with tree-ring measurements and for lending the necessary equipment; Susana Guzmán Gómez and María del Carmen Loyola Blanco (Laboratorio de Microscopía y Fotografía de la Biodiversidad II, Instituto de Biología, UNAM) for technical assistance with the digital photographs; Othón Alcántara-Ayala and Rodrigo Ortega García for their support during field work; Ana Paola Martínez-Falcón for assistance with the statistical analyses; Santiago Ramírez-Barahona and Carlos Solís Hay for his critical observations. This research was financed by the project PAPIIT IN223218. The first author thanks the financial support granted by the postdoctoral fellowship DGAPA-UNAM 2015-2016.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abrantes J, Campelo F, García-González I, Nabais C (2013) Environmental control of vessel traits in Quercus ilex under Mediterranean climate: relating xylem anatomy to function. Trees 27:655–662CrossRefGoogle Scholar
  2. Aloni R (1987) Differentiation of vascular tissues. Annu Rev Plant Physiol 38:179–204CrossRefGoogle Scholar
  3. Amoroso MM, Daniels LD, Baker PJ, Camarero JJ (2017) Dendroecology: tree-ring analyses applied to ecological studies. Springer, SwitzerlandCrossRefGoogle Scholar
  4. Anderegg WRL, Meinzer FC (2015) Wood anatomy and plant hydraulics in a changing climate. In: Hake U (ed) Functional and ecological xylem anatomy. Springer, Switzerland, pp 235–253Google Scholar
  5. Arlot S, Celisse A (2010) A survey of cross-validation procedures for model selection. Stat Surv 4:40–79CrossRefGoogle Scholar
  6. Ascoli D, Vacchiano G, Turco M, Conedera M, Drobyshev I, Maringer J, Motta R, Hacket-Pain A (2017) Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction. Nat Commun 8(2205):1–9Google Scholar
  7. Bayramzadeh V, Funada R, Kubo T (2008) Relationships between vessel element anatomy and physiological as well as morphological traits of leaves in Fagus crenata seedlings originating from different provenances. Trees 22:217–224CrossRefGoogle Scholar
  8. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Use R! series. Springer, New YorkCrossRefGoogle Scholar
  9. Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control. Holden-Day, San FranciscoGoogle Scholar
  10. Bradshaw RHW, Kito K, Gieseckre T (2010) Factors influencing the Holocene history of Fagus. For Ecol Manag 259:2204–2212CrossRefGoogle Scholar
  11. Bryukhanova M, Fonti P (2013) Xylem plasticity allows rapid hydraulic adjustment to annual climatic variability. Trees 27:485–496CrossRefGoogle Scholar
  12. Burns KC (2012) Masting in a temperate tree: evidence for environmental prediction. Austral Ecol 37:175–182CrossRefGoogle Scholar
  13. Cardoza-Martínez GF, Cerano-Paredes J, Villanueva-Díaz J, Cervantes-Martínez R, Guerra de la Cruz V, Estrada-Ávalos J (2013) Annual precipitation reconstruction of the Eastern region of Tlaxcala state. Rev Mex Cie Forest 5:110–127Google Scholar
  14. Chan BC, Cain JC (1967) The effect of seed formation on subsequent flowering in apple. J Am Soc Hortic Sci 91:63–68Google Scholar
  15. Climate-data.org (2016) Historical average temperature. http://climate-data.org/. Accessed 10 Oct 2016
  16. Cook ER, Holmes RL (1995) Guide for computer program ARSTAN. In: Grissino-Mayer HD, Holmes RL, Fritts HC (eds) The International tree-ring data bank program library version 2.0 User’s Manual, Laboratory of Tree-Ring Research. University of Arizona, Arizona, pp 75–87Google Scholar
  17. Cook ER, Holmes RL (1999) Program ARSTAN-chronology development with statistical analysis (users manual for program ARSTAN). Laboratory of Tree-Ring Research. University of Arizona, USAGoogle Scholar
  18. D´Arrigo R, Davi N, Jacoby G, Wilson R, Wiles G (2014) Dendroclimatic studies: trees growth and climate change in northern forest. American Geophysical Union, CanadaCrossRefGoogle Scholar
  19. Denk T, Grimm GW (2009) The biogeographic history of beech trees. Rev Palaeobot Palynol 158:83–100CrossRefGoogle Scholar
  20. Dittmar C, Elling W (2007) Dendroecological investigation of the vitality of Common Beech (Fagus sylvatica L.) in mixed mountain forests of the Northern Alps (South Bavaria). Dendrochronologia 2:37–56CrossRefGoogle Scholar
  21. Drobyshev I, Övergaard R, Saygin I, Niklasson M, Hickler T, Karlsson M, Sykes MT (2010) Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. For Ecol Manag 259:2160–2170CrossRefGoogle Scholar
  22. Drobyshev I, Niklasson M, Mazerolle MJ, Bergeron Y (2014) Reconstruction of a 253-year long mast record of European beech reveals its association with large scale temperature variability and no long-term trend in mast frequencies. Agric For Meteorol 192–193:9–17CrossRefGoogle Scholar
  23. Ehnis DE (1981) Fagus mexicana Martínez: su ecología e importancia. B. Sc. Thesis, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico CityGoogle Scholar
  24. Eller CB, Barros FV, Bittencourt PRL, Rowland L, Mencuccini M, Oliveira RS (2017) Xylem hidraulic safety and construction costs determine tropical tree growth. Plant Cell Environ 2018:1–15Google Scholar
  25. Eşen D (2000) Ecology and control of Rhododendron (Rhododendron ponticum L.) in Turkish eastern beech (Fagus orientalis Lipsky) forest. Doctoral thesis. Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USAGoogle Scholar
  26. Esperón-Rodríguez M, Barradas VL (2015) Comparing environmental vulnerability in the montane cloud forest of eastern Mexico: a vulnerability index. Ecol Indic 52:300–310CrossRefGoogle Scholar
  27. Etemad V, Sefidi K (2017) Seed production and masting behaviour in Oriental beech (Fagus orientalis Lipsky) forests of northern Iran. Forest Ideas 23:65–76Google Scholar
  28. Fang J, Lechowicz MJ (2006) Climatic limits for the present distribution of beech (Fagus L.) species in the world. J Biogeogr 33:1804–1819CrossRefGoogle Scholar
  29. FAO (2015) Global forest resources assessment 2015: how are the world´s forest changing? Food Agriculture Organization of the United Nations, RomeGoogle Scholar
  30. FAO-UNESCO (1988) Soil map of the world. Revised legend. World soil resources report 60. FAO-UNESCO, RomeGoogle Scholar
  31. Fletcher MS (2015) Mast seeding and the El Niño-Southern Oscillation: a long-term relationship? Plant Ecol 216:527–533CrossRefGoogle Scholar
  32. Fonti P, von Arx G, García-González I, Eilmann B, Sass-Klaassen U, Gärtner H, Eckstein D (2010) Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 185:42–53CrossRefGoogle Scholar
  33. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  34. García E (1988) Modificaciones al sistema de clasificación climática de Köppen, México, Offset Larios. Mexico CityGoogle Scholar
  35. García-González I, Fonti P (2008) Ensuring a representative sample of earlywood vessels for dendroclimatological studies: an example from two ring-porous species. Trees 22:237–244CrossRefGoogle Scholar
  36. Gareca EE, Fernández M, Stanton S (2010) Dendrochronological investigation of the high Andean tree species Polylepis besseri and implications for management and conservation. Biodivers Conserv 19:1839–1851CrossRefGoogle Scholar
  37. Génova M, Moya P (2012) Dendroecological analysis of relict pine forests in the center of the Iberian Peninsula. Biodivers Conserv 21:2949–2965CrossRefGoogle Scholar
  38. Godínez-Ibarra O, Ángeles-Pérez G, López-Mata L, García-Moya E, Valdez-Hernández JV, Santos-Posadas H, Trinidad-Santos A (2007) Lluvia de semillas y emergencia de plántulas de Fagus grandifolia subsp. mexicana en La Mojonera, Hidalgo, México. Rev Mex Biodivers 78:117–128Google Scholar
  39. González-Espinosa M, Meave JA, Lorea-Hernández FG, Ibarra-Manríquez G, Newton AC (2011) The Red List of Mexican cloud forest trees. Fauna & Flora International (FFI), CambridgeGoogle Scholar
  40. González-González BD, Rozas V, García-González I (2013) Early vessels of the sub-Meditterranean oak Quercus pyrenaica have greater plasticity and sensitivity than those of the temperate Q. petrae at the Atlantic-Mediterranean boundary. Trees 28:237–252CrossRefGoogle Scholar
  41. Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree Ring Res 57:205–221Google Scholar
  42. Gual-Díaz M, Rendón-Correa A (2014) Bosques mesófilos de montaña de México: diversidad, ecología y manejo. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Mexico CityGoogle Scholar
  43. Hacket-Pain AJ, Friend AD, Lageard JGA, Thomas PA (2015) The influence of masting phenomenon on growth-climate relationships in trees: explaining the influence of previous summers´ climate on ring width. Tree Physiol 35:319–330CrossRefGoogle Scholar
  44. Harper JL (1977) Population biology of plants. Academic Press, LondonGoogle Scholar
  45. Helama S, Lindholm M, Timonen M, Eronen M (2004) Detection of climate signal in dendrochronological data analysis: a comparison of tree-ring standardization methods. Theor Appl Climatol 79:239–254CrossRefGoogle Scholar
  46. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78Google Scholar
  47. Hukusima T, Matsui T, Nishio T, Pignatti S, Yang L, Lu SY et al (2013) Phytosociology of the beech (Fagus) forest in East Asia. Springer, HeidelbergCrossRefGoogle Scholar
  48. Kabeya D, Inagaki Y, Noguchi K, Han Q (2017) Growth rate reduction causes a decline in the annual incremental trunk growth in masting Fagus crenata trees. Tree Physiol 37:1444–1452CrossRefGoogle Scholar
  49. Kelly D (1994) The evolutionary ecology of mast seeding. Trees 9:465–470Google Scholar
  50. Kenkel NC, Orlóci L (1986) Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecology 67:919–928CrossRefGoogle Scholar
  51. Kindt R, Coe R (2005) Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), NairobiGoogle Scholar
  52. Kon H, Noda T (2007) Experimental investigation on weather cues for mast seeding of Fagus crenata. Ecol Res 22:802–806CrossRefGoogle Scholar
  53. Latte N, Lebourgeois F, Claessens H (2015) Increased tree-growth synchronization of beech (Fagus sylvatica L.) in response to climate change in northwestern Europe. Dendrochronologia 33:69–77CrossRefGoogle Scholar
  54. Lemoine N, Sheffield J, Dukes JS, Knapp AK, Smith MD (2016) Terrestrial precipitation analysis (TPA): a resource for characterizing long-term precipitation regimes and extremes. Methods Ecol Evol 7:1396–1401CrossRefGoogle Scholar
  55. Manos PS, Stanford AM (2001) The historical biogeography of Fagaceae: tracking the tertiary history of temperate and subtropical forests of the northern hemisphere. Int J Plant Sci 162:S77–S93CrossRefGoogle Scholar
  56. Matyas V (1965) Some ecological factors affecting the periodicity of fruit in oak and beech. Erdesz Kutatas Budapest 61:99–121 (in Hungarian with German summary) Google Scholar
  57. Ming-Lee T, Markowitz EM, Howe PD, Ko CY, Leiserowitz AAA (2015) Predictors of public climate change awareness and risk perception around the world. Nat Clim Change 5:1014–1020CrossRefGoogle Scholar
  58. Norton DA, Kelly D (1988) Mast seeding over 33 years by Dacrydium cupressinum Lamb. (rimu) (Podocarpaceae) in New Zealand: the importance of economies of scale. Funct Ecol 2:399–408CrossRefGoogle Scholar
  59. Noyer E, Lachenbruch B, Dlouhá J, Collet C, Ruelle J, Ningre F, Fournier (2017) Xylem traits in European beech (Fagus sylvatica L.) display a large plasticity in response to canopy release. Ann For Sci 76:46CrossRefGoogle Scholar
  60. Oksanen J, Blanchet FG, Kindt R, Legendre P, Michin PR, Hara RBO´, Simpson GL, Solymos P, Stevens MHH, Wagner H (2016) Vegan: community ecology package. R package version 2.3-3. http://cran.r-project.org. Accessed 20 Nov 2016
  61. Övergaard R, Gemmel P, Karlsson M (2007) Effects of weather conditions on mast year frequency in beech (Fagus sylvatica L.) in Sweden. Forestry 80:555–565CrossRefGoogle Scholar
  62. Pearse IS, Koenig WD, Kelly D (2016) Mechanisms of mast seeding resources, weather, cues, and selection. New Phytol 212:546–562CrossRefGoogle Scholar
  63. Pérez-Rodríguez PM (1999) Las hayas de México, monografía de Fagus grandifolia spp. mexicana. Universidad Autónoma de Chapingo, Chapingo, Mexico CityGoogle Scholar
  64. Peters R (1992) Ecology of beech forests in the northern Hemisphere. Doctoral Thesis, Wageningen Agricultural University, Wageningen, GermanyGoogle Scholar
  65. Peters R (1995) Architecture and development of Mexican beech forest. Vegetation science in forestry. In: Box EO, Peet RK, Masuzawa T, Yamada I, Fujiwara K, Maycock PF (eds) Vegetation science in forestry. Kluwer Academic Publishers, Dordrecht, pp 325–343Google Scholar
  66. Piovensan G, Adams JM (2005) The evolutionary ecology of masting: does the environmental prediction hypothesis also have a role in mesic temperate forests? Ecol Res 20:739–743CrossRefGoogle Scholar
  67. Ponce-Reyes R, Reynoso-Rosales VH, Watson JEM, Van Der Wal J, Fuller RA, Pressey RL, Possingham HP (2012) Vulnerability of cloud forest reserves in Mexico to climate change. Nat Clim Change 2:448–452CrossRefGoogle Scholar
  68. Pourtahmasi K, Lotfiomran N, Bräuning A, Parsapajouh D (2011) Tree-ring width and vessel characteristics of Oriental beech (Fagus orientalis) along an altitudinal gradient in the Caspian forests, Northern Iran. IAWA J 32:461–473CrossRefGoogle Scholar
  69. Price MF, Gratzer G, Duguma LA, Kohler T, Maselli D, Rosalaura R (2011) Mountain forests in a changing world-realizing values, addressing challenges. FAO/MPS and SDC, RomeGoogle Scholar
  70. Rehm EM, Olivas P, Stroud J, Feeley KJ (2015) Losing your edge: climate change and the conservation value of range-edge populations. Ecol Evol 5:4315–4326CrossRefGoogle Scholar
  71. Rinn F (2003) TSAP-Win. Time series analysis and presentation for dendrochronology and related applications for Microsoft Windows, version 4.64. http://www.rinntech.de/content/view/17/48/lang,english/index.html. Accessed 15 Dec 2016
  72. Rita A, Cherubini P, Leonardi S, Todaro L, Borghetti M (2015) Functional adjustments of xylem anatomy to climatic variability: insights from long-term Ilex aquifolium tree-ring series. Tree Physiol 35:817–828CrossRefGoogle Scholar
  73. Rodríguez-Ramírez EC, Sánchez-González A, Ángeles-Pérez G (2013) Current distribution and coverage of Mexican beech forests Fagus grandifolia subsp. mexicana in Mexico. Endanger Species Res 20:205–216CrossRefGoogle Scholar
  74. Rodríguez-Ramírez EC, Sánchez-González A, Ángeles-Pérez G (2016) Relationship between vegetation structure and microenvironment in Fagus grandifolia subsp. mexicana forest relicts in Mexico. J Plant Ecol 138:1–11Google Scholar
  75. Rodríguez-Ramírez EC, Luna-Vega I, Rozas V (2018) Tree-ring research of Mexican beech (Fagus grandifolia subsp. mexicana) a relict tree endemic to eastern Mexico. Tree Ring Res 74:1CrossRefGoogle Scholar
  76. Rossi L, Sebastiani L, Tognetti R, d´Andria R, Morelli G, Cherubini P (2013) Tree-ring wood anatomy and stable isotopes show structural and functional adjustments in olive trees under different water availability. Plant Soil 372:567–579CrossRefGoogle Scholar
  77. Rozas V (2001) Detecting the impact of climate and disturbances on tree-rings of Fagus sylvatica L. and Quercus robur L. in a lowland forest in Cantabria, Northern Spain. Ann For Sci 58:237–251CrossRefGoogle Scholar
  78. Rozas V, Camarero JJ, Sangüesa-Barreda G, Souto M, García-González I (2015) Summer drought and ENSO-related cloudiness distinctly drive Fagus sylvatica growth near the species rear-edge in norther Spain. Agric For Meteorol 201:153–164CrossRefGoogle Scholar
  79. Rozas V, Le Quesne C, Muñoz A, Puchi P (2016) Climate and growth of Podocarpus salignus in Valdivia. Chile Dendrobiol 76:3–11CrossRefGoogle Scholar
  80. Rzedowski J (2015) Catálogo preliminar de las especies de árboles silvestres de la Sierra Madre Oriental. In: Flora del Bajío y de regiones adyacentes, fascículo complementario XXX. Instituto de Ecología. A.C. Centro Regional del Bajío Pátzcuaro, Michoacán, Mexico CityGoogle Scholar
  81. Sass U, Eckstein D (1995) The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation. Trees 9:247–252CrossRefGoogle Scholar
  82. Sawada H, Kaji M, Oomura K, Igarashi Y (2008) Influences of mast seedling on tree growth dynamics of Fagus crenata and Fagus japonica in central Honshu, Japan. J Jpn For Soc 90:129–136CrossRefGoogle Scholar
  83. Schoene DHF, Bernier PY (2012) Adapting forestry and forest to climate change: a challenge to change the paradigm. For Policy Econ 24:12–19CrossRefGoogle Scholar
  84. Schweingruber FH (1996) Tree ring and environment: dendroecology. Paul Haupt AG Berne, SwitzerlandGoogle Scholar
  85. SEMARNAT, Secretaría del Medio Ambiente y Recursos Naturales (2010) Norma Oficial Mexicana NOM-059-SEMARNAT-2010. Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Diario Oficial de la Federación. Segunda Sección, México, Distrito Federal [online]. http://www.profepa.gob.mx/innovaportal/file/435/1/NOM_059_SEMARNAT_2010.pdf. Accessed 06 Apr 2016
  86. Speer JH (2001) Oak mast history from dendrochronology: a new technique demonstrated in the southern Appalachian region. Dissertation, University of Tennessee, Knoxville, USAGoogle Scholar
  87. Speer JH (2010) Fundamentals of tree ring research. University of Arizona Press, TucsonGoogle Scholar
  88. Speer JH, Bräuning A, Zhang Q, Pourtahmasi K, Gaire NP, Dawadi B et al (2016) Pinus roxburghii stand dynamics at a heavily impacted site in Nepal: research through an educational fieldweek. Dendrochronologia 41:2–9CrossRefGoogle Scholar
  89. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, ChicagoGoogle Scholar
  90. Suzuki W, Osumi K, Masaki T (2005) Mast seeding and its spatial scale in Fagus crenata in northern Japan. For Ecol Manag 205:105–116CrossRefGoogle Scholar
  91. Téllez-Valdés O, Dávila-Aranda P, Lira-Saade R (2006) The effects of climate change on the long-term conservation of Fagus grandifolia var. mexicana, an important species of the cloud forest in eastern Mexico. Biodivers Conserv 15:1095–1107CrossRefGoogle Scholar
  92. Tinoco-Rueda JA, Toledo-Medrano ML, Carrillo-Negrete IJ, Monterroso-Rivas I (2009) Clima y variabilidad climática en los municipios de Hidalgo con presencia de bosque mesófilo de montaña. In: Monterroso-Rivas AJ (ed) El bosque mesófilo en el estado de Hidalgo. Perspectiva ecológica frente al cambio climático. Universidad Autónoma Chapingo, Mexico City, pp 71–98Google Scholar
  93. Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, BerlinCrossRefGoogle Scholar
  94. Vacchiano G, Hacket-Pain A, Turco M, Motta R, Maringer J, Conedera M, Drobyshev I, Ascoli D (2016) Spatial patterns and broad-scale weather cues of beech mast seeding in Europe. New Phytol 215:595–608CrossRefGoogle Scholar
  95. Venegas-González A, von Arx G, Chagas MP, Filho MT (2015) Plasticity in xylem anatomical traits of two tropical species in response to intra-seasonal climate variability. Trees 29:423–435CrossRefGoogle Scholar
  96. von Arx G, Kueffer C, Fonti P (2013) Quantifying plasticity in vessel grouping added value from the image analysis tool Roxas. IAWA J 34:433–445CrossRefGoogle Scholar
  97. Wason JW, Dovciak M, Beier CM, Battles JJ (2017) Tree growth is more sensitive than species distributions to recent changes in climate and acidic deposition in the northeastern United States. J Appl Ecol 54:1648–1657CrossRefGoogle Scholar
  98. Webster GL (1995) The panorama of Neotropical cloud forest. In: Churchill SP, Balslev H, Forero E, Luteyn JL (eds) Biodiversity and conservation of Neotropical Montane Forests. The New York Botanical Garden, New York, pp 53–57Google Scholar
  99. Williams-Linera G, Rowden A, Newton AC (2002) Distribution and stand characteristics of relict populations of Mexican beech (Fagus grandifolia var. mexicana). Biol Cons 109:27–36CrossRefGoogle Scholar
  100. Wood SN (2000) Modelling and smoothing parameter estimation with multiple quadratic penalties. J R Stat Soc Ser B 62:413–428CrossRefGoogle Scholar
  101. Yin J, Fridley JD, Smith MS, Bauerle TL (2016) Xylem vessel traits predict the leaf phenology of native and non-native understorey species of temperate deciduous forests. Funct Ecol 30:206–214CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ernesto Chanes Rodríguez-Ramírez
    • 1
  • Teresa Terrazas
    • 2
  • Isolda Luna-Vega
    • 1
    Email author
  1. 1.Laboratorio de Biogeografía y Sistemática, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Departamento de Botánica, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations