Advertisement

Trees

, Volume 32, Issue 6, pp 1669–1680 | Cite as

Allometric equations for estimating oil palm stem biomass in the ecological context of Benin, West Africa

  • Hervé Nonwègnon Sayimi AholoukpèEmail author
  • Bernard Dubos
  • Philippe Deleporte
  • Albert Flori
  • Lucien Guillaume Amadji
  • Jean-Luc Chotte
  • Didier Blavet
Original Article
  • 119 Downloads

Abstract

Key message

The models we developed used palm stem diameter at 1.5 m, stem density measured by core sampling at 1.5 m, and the height of the palm to estimate palm stem biomass.

Abstract

Allometric equations based on non-destructive methods were developed to estimate palm stem biomass. Twenty mature palms of different ages were subject to destructive and non-destructive measurements: stem height from the collar to the bottom of the frond at the 33rd position in the crown (frond 33), dry weight, the diameter and thickness of cylindrical slices sectioned at different heights along the stem, and the dry weight of samples of stem tissue taken from the core of each slice. The densities of the stem slices obtained using the destructive method (Dtrue) and the non-destructive method (Dcore) were linearly correlated: Dtrue = 1.062 × Dcore (R2 = 0.99) independently of the height, age and genetic origin of the palm. Stem density varied with height, reaching its maximum at around 1.5 m, after which it remained more or less constant to the top of the stem. Stem linear density (SLD) estimated from the product of the density and the section of the stem fell to a threshold value that remained more or less constant above 1.5 m. SLD between observed slices was estimated by interpolation based on a hyperbolic model to compute the true biomass of each palm. An equation derived from the integral of the hyperbolic model was fitted to estimate palm stem biomass as a function of wood density observed by non-destructive sampling at 1.5 m on the stem and of the diameter at the same height. With this equation, palm stem biomass can be estimated with an error of 5%.

Keywords

Prediction models Aboveground biomass Wood density Oil palm Benin 

Notes

Acknowledgements

The authors wish to thank the institutions that provided material and financial support for this work, particularly the Oil Palm Research Center (Centre de Recherches Agricoles Plantes Pérennes CRAPP-Pobè/INRAB, Benin) and PalmElit which is a subsidiary of CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement) in Montpellier/France. The authors also thank all the technicians in the Agronomy Division of CRAPP-Pobè, for their support during field work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aholoukpè H, Dubos B, Flori A, Deleporte P, Amadji G, Chotte J-L, Blavet D (2013) Estimating aboveground biomass of oil palm: allometric equations for estimating frond biomass. For Ecol Manag 292:122–129CrossRefGoogle Scholar
  2. Arrouays D, Balesdent J, Germon JC, Jayet PA, Soussana JF, Stengel P (2002) Contribution à la lutte contre l’effet de serre. Stocker du carbone dans les sols agricoles de France ? Expertise Scientifique Collective. Synthèse du rapport. INRAGoogle Scholar
  3. Azontondé HA (1991) Propriétés physiques et hydrauliques des sols au Bénin. Soil Water. Balance in the Sudano-Sahelian Zone. In: Proceedings of the Niamey Work Shop, vol 199, IA HS Publ, pp 253–256Google Scholar
  4. Coe MT, Latrubesse EM, Ferreira ME, Amsler ML (2011) The effects of deforestation and climate variability on the stream flow of the Araguaia River, Brazil. Biogeochemistry 105:119–131CrossRefGoogle Scholar
  5. Corley RHV, Tinker PB (2016) The oil palm, 5th edn. Blackwell Science Ltd, HobokenGoogle Scholar
  6. Corley RHV, Hardon JJ, Tan GY (1971) Analysis of growth of the oil palm (Elaeis guineensis Jacq). I. Estimation of growth parameters and application in breeding. Euphytica 20:307–315CrossRefGoogle Scholar
  7. de Berchoux CH, Jacquemard JC, Kouamé MB, Lecoustre R (1986) Morphologie de la croissance et du développement des différents organes du palmier à huile en plantation. In: Croissance et développement du palmier à huile, Chp III. Institut de Recherche pour les Huiles et Oléagineux (IRHO), station principale de La Mé, Bingerville, pp 226–366Google Scholar
  8. Djomo AN, Chimi CD (2017) Tree allometric equations for estimation of above, below and total biomass in a tropical moist forest: case study with application to remote sensing. For Ecol Manag 391:184–193CrossRefGoogle Scholar
  9. Dufrene E, Ochs R, Saugier B (1990) Photosynthèse et production du palmier à huile en relation avec les facteurs climatiques. Oléagineux 45(484):8–9 (fasc. 345–355) Google Scholar
  10. Ebuy J, Lokombe JP, Ponette Q, Sonwa D, Picard N (2011) Allometric equation for predicting aboveground biomass of three tree species. J Trop For Sci 23(2):125–132Google Scholar
  11. Fayolle A, Doucet J-L, Gillet J-F, Bourland N, Lejeune P (2013) Tree allometry in Central Africa: testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. For Ecol Manag 305:29–37CrossRefGoogle Scholar
  12. Fonton NH, Medjibé V, Djomo A, Kondaoulé J, Rossi V, Ngomanda A, Maïdou H (2017) Analyzing accuracy of the power functions for modeling aboveground biomass Prediction in Congo Basin tropical forests. Open J For 7:388–402. http://www.scirp.org/journal/ojf (ISSN Online: 2163–0437, ISSN Print: 2163–0429)
  13. Germer J, Sauerborn J (2008) Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environ Dev Sustain 10:697–716CrossRefGoogle Scholar
  14. Henry M, Besnard A, Asante WA, Eshun J, Adu-Bredu S, Valentini R, Bernoux M, Saint-André L (2010) Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For Ecol Manage 260:1375–1388CrossRefGoogle Scholar
  15. Henry M, Picard N, Trotta C, Manlay RJ, Valentini R, Bernoux M, Saint-André L (2011) Estimating tree biomass of Sub-Saharan African forests: a review of available allometric equations. Silva Fennica 45(3B):477–569CrossRefGoogle Scholar
  16. Henson IE, Chang KC, Siti Nor Aishah M, Chai SH, Hasnuddin Mhd Y, Zakaria A (1999) The oil palm trunk as a carbohydrate reserve. J Oil Palm Res 11(2):98–113Google Scholar
  17. Henson IE, Harun HM, Eswa M, Dolmat TM (2003) Estimating density of biomass of oil palm trunks. In: Proceedings of the PIPOC. International Palm Oil Congress, pp 275–283Google Scholar
  18. Houghton RA (2005) Aboveground forest biomass and the global carbon balance. Global Change Biol 11(6):945–958CrossRefGoogle Scholar
  19. Jaffré T (1983) Evolution de la biomasse épigée et du stock de carbone d’une culture pérenne: le palmier à huile (Elaeis guineensis Jacq.). Laboratoire de Botanique. Projet inter équipes—foret ivoiriennes p. 1.k.e.n./o.r.s.t.o.m. ABIDJAN - (Côte d’ Ivoire). 9pGoogle Scholar
  20. Kenzo T, Ichie T, Hattori D, Itioka T, Handa C, Ohkubo T, Kendawang JJ, Nakamura M, Sakaguchi M, Takahashi N, Okamoto M, Tanaka-Oda A, Sakurai K, Ninomiya I (2009) Development of allometric relationships for accurate estimation of above- and below-ground biomass in tropical secondary forests in Sarawak, Malaysia. J Trop Ecol 25:371–386CrossRefGoogle Scholar
  21. Lamade E, Bouillet J-P (2005) Carbon storage and global change: the role of oil palm. OCL 12(2):154–160CrossRefGoogle Scholar
  22. Le Toan T, Quegan S, Davidson MWJ, Balzter H, Paillou P, Papathanassiou K, Plummer S, Rocca F, Saatchi S, Shugart H, Ulander L (2011) The BIOMASS mission: mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens Environ 115:2850–2860CrossRefGoogle Scholar
  23. Legros S, Mialet-Serra I, Clement-Vidal A, Caliman J-P, Siregarf A, Fabre D, Dingkuhn M (2009) Role of transitory carbon reserves during adjustment to climate variability and source–sink imbalances in oil palm (Elaeis guineensis). Tree Physiol 29:1199–1211CrossRefGoogle Scholar
  24. Liddell MJ, Nieullet N, Otávio C, Campoe OC, Freiberg M (2007) Assessing the above-ground biomass of a complex tropical rainforest using a canopy crane. Austral Ecol 32:43–58CrossRefGoogle Scholar
  25. Mialet-Serra I, Clément A, Sonderegger N, Roupsard O, Jourdan C, Labouisse J-P, Dingkuhn M (2005) Assimilate storage in vegetative organs of coconut (Cocos nucifera L.). Exp Agric 41:1–14CrossRefGoogle Scholar
  26. Mitchell Matthew W, Gumpertz Marcia L (2003) Spatio-temporal prediction inside a free-air CO2 enrichment system. JABES 8:310.  https://doi.org/10.1198/1085711032183 CrossRefGoogle Scholar
  27. Morel AC, Saatchi SS, Malhi Y, Berry NJ, Banin L, Burslem D, Nilus R, Ong RC (2011) Estimating aboveground biomass in forest and oil palm plantation in Sabah, Malaysian Borneo using ALOS PALSAR data. For Ecol Manag 262:1786–1798CrossRefGoogle Scholar
  28. Ng SK, von Uexküll H, Härdter R (2003a) Botanical aspects of the oil palm relevant to crop management. In: Fairhurst T, Härdter R (eds) Oil palm management for large and sustainable yields. Potash and Phosphate Institute (PPI), Potash and Phosphate Institute of Canada (PPIC) and International Potash Institute (IPI), pp 13–26Google Scholar
  29. Ng SK, Thong CK, Khaw CH, Ooi HSH, Leng KY, Kayaroganam P (2003b) Clonal oil palm: production, yield performance and nutritional requirements. In: Fairhurst T, Härdter R (eds) Oil palm management for large and sustainable yields. Potash and Phosphate Institute (PPI), Potash and Phosphate Institute of Canada (PPIC) and International Potash Institute (IPI), pp 13–26Google Scholar
  30. Ngomanda A, Obiang ELN, Lebamba J, Mavouroulou MQ, Gomat H, Mankou SG, Loumeto J, Iponga MD, Ditsouga KF, Koumba ZR, Bobé BHK, Okouyi MC, Nyangadouma R, Lépengué N, Mbatchi B, Picard N (2014) Site-specific versus pantropical allometric equations: which option to estimate the biomass of a moist central African forest? For Ecol Manag 312:1–9CrossRefGoogle Scholar
  31. Oil World Annual (2010) The independent forecasting service for oilseeds, oils and meals. ISTA Mielke GmbH, HamburgGoogle Scholar
  32. Picard N, Saint-André L, Henry M (2012) Manuel de construction d’équations allométriques pour l’estimation du volume et la biomasse des arbres: de la mesure de terrain à la prédiction. In: Organisation des Nations Unies pour l’alimentation et l’agriculture, et Centre de Coopération Internationale en Recherche Agronomique pour le Développement. Rome, MontpellierGoogle Scholar
  33. Ploton P, Barbier N, Momo TS, Réjou-Méchain M, Bosela BF, Chuyong G, Dauby G, Droissart V, Fayolle A, Goodman CR, Henry M, Kamdem GN, Mukirania KJ, Kenfack D, Libalah M, Ngomanda A, Rossi V, Sonké B, Texier N, Thomas D, Zebaze D, Couteron P, Berger U, Pélissier R (2016) Biogeosciences 13:1571–1585. http://www.biogeosciences.net/13/1571/2016/.  https://doi.org/10.5194/bg-13-1571-2016. Accessed 24 Jul 2018
  34. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/. Accessed 24 Jul 2018
  35. Ribeiro SC, Fehrmann L, Soares CPB, Jacovine LAG, Kleinn C, Gaspar RD (2011) Above and belowground biomass in a Brazilian Cerrado. For Ecol Manag 262(3):491–499CrossRefGoogle Scholar
  36. Sampaio E, Gasson P, Baracat A, Cutler D, Pareyn F, Costa Lima K (2010) Tree biomass estimation in regenerating areas of tropical dry vegetation in northeast Brazil. For Ecol Manag 259:1135–1140CrossRefGoogle Scholar
  37. Sánchez-González M, Cañellas I, Montero G (2007) Generalized height-diameter and crown diameter prediction models for cork oak forests in Spain. Invest Agrar Sist Recur For 16(1):76–88CrossRefGoogle Scholar
  38. Sharma M, Parton J (2007) Height–diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. For Ecol Manag 24:187–198CrossRefGoogle Scholar
  39. Sunaryathy PI, Suhasman S, Kanniah KD, Tan KP (2015) Estimating aboveground biomass of oil palm trees by using the destructive method. World J Agric Res 3(1):17–19Google Scholar
  40. Syahrinudin (2005) The potential of oil palm and forest plantations for carbon sequestration on degraded land in Indonesia. Ecol Dev Ser 28:1–115Google Scholar
  41. van Breugel M, Ransijn J, Craven D, Bongers F, Hall JS (2011) Estimating carbon stock in secondary forests: decisions and uncertainties associated with allometric biomass models. For Ecol Manag 262:1648–1657CrossRefGoogle Scholar
  42. Vonesh EF (2012) Generalized linear and nonlinear models for correlated data: theory and applications using SAS®. SAS Institute Inc, CaryGoogle Scholar
  43. Wakker E (1999) Forest fires and the expansion of Indonesia’s oil-palm plantations. WWF Indonesia, JakartaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hervé Nonwègnon Sayimi Aholoukpè
    • 1
    Email author
  • Bernard Dubos
    • 2
  • Philippe Deleporte
    • 3
  • Albert Flori
    • 2
  • Lucien Guillaume Amadji
    • 4
  • Jean-Luc Chotte
    • 5
  • Didier Blavet
    • 5
  1. 1.Centre de Recherches Agricoles Plantes PérennesInstitut National des Recherches Agricoles du BéninPobèBenin
  2. 2.CIRADUPR Systèmes de pérennesMontpellierFrance
  3. 3.CIRADUMR Eco&Sols (Ecologie Fonctionnelle & Biogéochimie des Sols et des Agro-écosystèmes) INRA-IRD-SupAgro-CIRADMontpellier Cedex 2France
  4. 4.Faculté des Sciences AgronomiquesUniversité d’Abomey-Calavi, FSA/UACCotonouBenin
  5. 5.IRDUMR Eco&Sols (Ecologie Fonctionnelle & Biogéochimie des Sols et des Agro-écosystèmes) INRA-IRD-SupAgro-CIRADMontpellier Cedex 2France

Personalised recommendations